Lunar Impact Features and Processes

Co-Leads: Gordon Osinski (gosinski@uwo.ca), Jay Melosh (jmelosh@purdue.edu)

Tentative outline, LPI meeting, May 26, 2016

- 1) Preface: What is new since NVM-1
- 2) The basics of impact cratering (Osinski, Collins, Melosh, after Elements article)
 - A. Overview of the formation of impact craters.
 - B. Stages of impact cratering
 - Contact and Compression
 - Excavation
 - Collapse
 - C. Basic scaling of crater dimensions
 - D. Shock metamorphism and impact rocks
- 3) Methods of study
 - A. Observational (Spacecraft missions, especially the following)
 - Kaguya (Ol distribution, etc.) (Haruyama?)
 - LRO (LOLA, mini-RF, etc.) (Neish)
 - GRAIL (gravity probes beneath surface)
 - Chandrayaan (M3) (Pieters?)
 - Telescopic, ground-based radar, etc. (Ghent?)
 - B. Theoretical advances (hydrocodes, plus?)
 - iSALE (porosity, dilatancy, 2D, 3D) (Collins?)
 - CTH (3D, adaptive mesh)
 - SPH (3D, Self gravity—but probably not important for cratering)
 - C. Experimental
 - EoS experiments (anomalous heat capacity at high temperature)
 - Memin program comparing shock theory, experiments
 - TEM studies of shocked minerals
 - Shock indicators in lunar relevant minerals: pyroxene, plagioclase, etc.
 - D. Terrestrial (and other planets) analog studies (Haughton, Chicxulub, etc.)
- 4) Lunar craters and basins (from large to small)
 - A. Basins
 - Mantle uplift beneath large basins (Neumann)
 - Ancient, degraded basins from GRAIL Bouguer anomalies (Neumann)
 - Basin diameter vs transient crater solved!
 - Mascon origin finally solved
 - Ring tectonics validated (B. Johnson?)
 - Orientale, detailed gravity from GRAIL endgame, modeling (B. Johnson?)
 - Nearside/farside asymmetry a function of thermal state (Potter)

- Role of oblique impact, SPA special problems (B. Johnson?)
- B. Peak Ring and Protobasins
 - Morphology transition from central peak to peak ring from LOLA data
 - Formation mechanics (Head/Baker group vs. hydrocodes)
 - Ring mineralogy (mid crustal origin in Schrödinger) (Kring?)
- C. Complex to Simple Craters
 - Surprising positive Bouguer anomalies from GRAIL (Soderblom the younger)
 - Impact velocity, oblique impact role?
 - Role of target properties: porosity, slope, pre-impact topography
 - Highland vs. mare morphology (role of porosity?) (Milbury?)
 - Tycho: Melt distribution, LROC details (Denevi, Neish?)
 - Nature of rays, esp. Tycho from LROC
 - Shackleton depth puzzle
 - Possible retention of impactor material in central peaks, regolith
 - Melt distribution, dynamics in small craters (mini-RF findings) (Neish)
 - Strength/gravity transition in small craters, importance for age dates (van der Bogert)
 - Depth/diameter variations in small craters (Mahanti)
 - Ejecta blanket morphology (Dhinga)
 - Artificial craters from controlled spacecraft descent
 - Impact flashes
 - Recent impacts, splotches (Speyerer)
 - Ejecta plumes, vaporization
- 5) Shock metamorphism, melting, impactites
 - Stress wave fragmentation, compaction of target rocks, spall
 - Shock effects in plagioclase, pyroxene
 - Melt rocks
 - Ejecta dispersal, lunar melt spherules (Zellner)
 - Impactites (Breccias, new classifications)
- 6) Unresolved/unclear questions for the future
 - What is Procellarum basin (volcanic, impact)? (Andrews-Hanna)
 - Role of thermal gradients, formation time, crustal thickness on crater morphology (Potter)
 - SPA (nature of crust, gravity structure, magnetic anomalies, lunar figure, reorientation) (James?)
 - Where is all the mantle olivine (re. Kaguya and M3 data)
 - Details of ring fault formation, localization on faults
 - Seismic efficiency of impacts (Richardson?)
 - Is self-cratering real? (Plescia, Zanetti?)
 - Melting at the antipode of large impacts, esp. SPA