# The Structure of the Lunar Interior 

Co-Leads Jeff Andrews-Hanna, Renee Weber

- Shallow structure - crust and upper mantle (emphasis on GRAIL)
- Compositional constraints: Remote sensing
- Pure anorthosite
- Central peaks, norite
- Olivine
- SPA, PKT; opx vs olivine, magma ocean overturn (magmatic evolution 1?), etc
- Mixed feldspathic layer
- Crustal thickness
- Mean thickness, implications for Al, KREEP, etc.
- Global asymmetry
- Density and density gradients
- Basin-related structure
- Mantle excavation vs. crustal thickness
- Signature of ring faults and ring dikes
- Mascon structure
- GRAIL structures
- Dikes - implications for early lunar evolution
- PKT
- Volcanoes, lava tubes (development of the Moon chapter)
- Maria thickness
- Crater signatures
- Small-scale variability
- Deep mantle and core structure (GRAIL, seismology, other geophysical constraints)
- Compositional constraints (mare basalt elemental abundances)
- Seismology
- Differences between most recent published seismic structure models
- Evidence for partial melt (seismic Q, tie-ins to k2 \& heat flow)
- Evidence for layered core (array seismology)
- LLR (MOI)
- GRAIL (mass, gravity coefficients, dissipation, love numbers)
- William et al. 2014 \&2015, Yan et al. 2015, Matsumoto et al. 2015
- Magnetic constraints on core (magnetism chapter)
- Magnetic induction
- Paleomagnetic constraints on core dynamo
- Thermal evolution
- Apollo heat flow \& GRAIL constraints
- Mantle convection
- Lunar geodynamics
- Lunar figure and implications for the rotational-tidal evolution
- Work by Garrick-Bethel, Matsuyama, Keane
- Magma ocean overturn (magmatic evolution 1?)
- Mascon processes (cratering processes chapter)

Potential contributors:
Shallow structure: Jeff Andrews-Hanna
Deep structure: Renee Weber, Isamu Matsuyama
Thermal evolution: Walter Kiefer, Matt Siegler
Lunar figure \&
implications for the rotational-tidal evolution: James Keane, Isamu Matsuyama

6 co-authors

