CE 336 Introduction to Structural Engineering (formerly Structural Mechanics I)

Course Outline Fall 2004

Instructor: Ahsan Kareem, Dept. of Civil Engineering and Geological Sciences Email: <u>kareem@nd.edu</u>; web: <u>www.nd.edu/~nathaz</u>; <u>http://windycity.ce.nd.edu</u>

TA: Racheal Stansel; rstansel@nd.edu

Grader: TBA

Text: Structural Analysis: Using Classical and Matrix Methods/Nelson and McCormac 3rd Edition, Wiley. Plus WebCT

Time: MW 11:45 am - 1:00 pm.....Cushing 302

Synopsis: Introduction to structural engineering; analysis of statically determinate structures; deflection analysis; analysis of indeterminate structures using classical and matrix methods; introduction to analysis software, structural design concepts and codes and standards.

Dates	Topics
Aug 25	Introduction to Structures
Aug 30	Understanding Structures
	Structural Loads
Sept 1	Natural Hazards
	Structural PerformanceSensorsIT
	Safety and Risk Analysis; Ethics in Structural Engineering
Sept. 6 & 8	Truss Analysis
Sept 12 & 15	Bending Moment AnalysisBeams and Frames
Sept. 20	Influence Lines
	Deflection Analysis
Sept. 22 & 27	Conjugate beam
Sept. 29, Oct 4, 6	Virtual Work
Oct. 11	Deflection Analysis – Experimental Demonstration
Oct. 13	First Exam
Oct. 18-22	Fall Break have fun!
	Analysis of Indeterminate Structures
Oct. 25 & 27,	Force- Methods Consistent deformation
Nov. 1	
	Analysis of Indeterminate Structures Contd.

Nov. 3 & 8	Displacement methods – Slope deflection
Nov. 10 & 15	Approximate Methods
Nov. 17	Second Exam
	Introduction to Matrix Methods
Nov. 22 & 24	Displacement Methods
Nov. 29	Analysis Software
	Introduction to Structural Design
Dec. 1	Design Concepts
Dec. 6	Codes and Specifications
Dec 10	Project presentations
Dec 15	Final Exam 8:00- 10:00 am

Homework: At least one homework set will be assigned related to each topic. The homework will be due at the BEGINNING of the class a week from the day it is assigned. Please avoid late submissions as a late homework will result in a 10% reduction in your assigned score for that homework set.

Project: The project entails learning about a special structure, already built, and writing a report not to exceed 10 double spaced pages. You should describe the structure, the loads it was designed for, analysis technique (if available), any the construction technique used, any historical importance, pictures, etc. You may pick a topic of your choice, e.g., the Golden Gate Bridge. Examples from the last fall will be posted on the class web for your information. Each one of you will also be required to make a short presentation of your project using Power Point.

Grade:

Two exams during the semester	40%
Homework	15%
Project	15%
Final Exam	30%