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SUMMARY

With the exponential increase in computing power, modelers of coastal and oceanic regions are capable
of simulating larger domains with increased resolution. Typically, these models use graded meshes
wherein the size of the elements can vary by orders of magnitude. However, with notably few exceptions,
the graded meshes are generated using criteria that neither optimize placement of the node points nor
properly incorporate the physics, as represented by discrete equations, underlying tidal flow and
circulation to the mesh generation process. Consequently, the user of the model must heuristically adjust
such meshes based on knowledge of local flow and topographical features—a rough and time consuming
proposition at best. Herein, a localized truncation error analysis (LTEA) is proposed as a means to
efficiently generate meshes that incorporate estimates of flow variables and their derivatives. In a
one-dimensional (1D) setting, three different LTEA-based finite element grid generation methodologies
are examined and compared with two common algorithms: the wavelength to Dx ratio criterion and the
topographical length scale criterion. Errors are compared on a per node basis. It is shown that solutions
based on LTEA meshes are, in general, more accurate (both locally and globally) and more efficient. In
addition, the study shows that the first four terms of the ordered truncation error series are in direct
competition and, subsequently, that the leading order term of the truncation error series is not necessarily
the dominant term. Analyses and results from this 1D study lay the groundwork for developing an
efficient mesh generating algorithm suitable for two-dimensional (2D) models. Copyright © 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent advances have permitted the development and the successful implementation of coastal
ocean circulation models for increasingly larger domains [1–14]. While a large domain, such as
the Western North Atlantic Tidal (WNAT) model domain shown in Figure 1, increases the
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predictive capabilities of coastal ocean models [9,10], it complicates the process of computa-
tional node placement. However, the actual gridding of larger, more complex domains has not
received the attention it deserves. This issue is addressed herein with the presentation of a grid
generation method that more successfully couples the physics, as represented by discrete
equations, underlying tidal flow and circulation to the mesh generation process.

Larger domains warrant a method of gridding that utilizes unstructured meshes, e.g. the
finite element method, which allows for spatially-varying levels of discretization. Because, in

Figure 1. The WNAT model domain including bathymetry (in m).
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general, shallower water has a higher localized wave number content than deeper water, higher
resolution is required in shallow water regions. Furthermore, it has been shown that the
computed response is highly sensitive to grid resolution in regions with steep bathymetric
gradients [11,13,14]. Two-dimensional (2D) response structures associated with intricate shore-
lines, 2D topography, amphidromes and resonant bays also require local refinement of grids.
Conversely, deep ocean waters usually result in large expanses with more slowly-varying
response structures in space, which can utilize a coarser level of resolution. These consider-
ations indicate that variably-graded meshes are needed; these are easily implemented with the
finite element method.

Currently, the method of production of variably-graded meshes for coastal ocean circulation
models is poorly defined, imprecise and ad hoc. It is a tedious process at best. Because no
robust criterion or node spacing routine exists that incorporates all of the aforementioned
physical characteristics and subsequent responses into the mesh generation process, modelers
are left to rely on their knowledge of particular domains and their intuition. For a large and
complicated domain (Figure 1), this is a daunting task.

A widely used strategy to initiate variably-graded grids utilizes the wavelength to grid size
ratio criterion for one-dimensional (1D), linear, frictionless, constant topography flow. This
ratio is computed as:

l

Dx
=


gh
Dx

T, (1)

where g=gravitational constant, h=water depth and T= tidal period of interest. The ratio is
set to some constant value—usually 40 or less—and an initial grid is generated [10,15]. The
mesh is then manually edited to suit the modeler’s needs. Local areas with a high rate of
bathymetric change, such as the shelf break, the relatively steep continental slope and the
continental rise, are not properly resolved by the wavelength to grid size ratio criterion
[10–14]. Furthermore, this criterion does not recognize the 2D structure of the tidal response
associated with intricate shorelines, continental shelf waves, Kelvin waves and amphidromes.

Hanna and Wright [16] recently proposed a new 1D criteria. The topographic length scale
relation computes grid size such that

Dx5
ah
h, x

, (2)

where h=water depth, h, x= the bathymetric slope and a, the mesh generation criterion, is set
to some constant value such that Dh/h5a over any element. The topographic length scale
relation incorporates bathymetry and the gradient of bathymetry into the mesh generation
process. However, this criterion fails in the limit as h, x�0. Thus, when no gradient in
bathymetry exists, e.g. locally constant depth regions, Dx=�, which is clearly unreasonable.
In addition, the TLS criterion does not take into account changes in the sea surface elevation
or velocity field.

Grid generation techniques for the Navier–Stokes equations often involve the use of
adaptive mesh refinement. Typically, these techniques require the calculation of some error
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norm over an element. The error norm, in conjunction with the refinement algorithm, defines
whether the element should be refined, stay the same, or be combined with neighboring
elements to coarsen the resolution. Many different a posteriori error estimators are used for
Navier–Stokes flow [17–21]. These local grid refinement algorithms typically examine the
error in the computed response. They are not particularly well-suited for long wave propaga-
tion problems because the identification of localized error in the solution and subsequent local
refinement does not necessarily improve the global solution. In fact, as will be shown in this
paper, for the shallow water equations, the error source does not necessarily correspond with
the region where errors in the response are most significantly manifested.

Alternatively, the localized truncation error analysis (LTEA) proposed in this paper exam-
ines the error produced by discretizing the governing equations, instead of focussing on the
solution error. The LTEA procedure is still an a posteriori error estimation procedure because
it includes approximations to the variables being simulated and their derivatives. Thus, an
LTEA-based node placement routine directly couples estimated errors with the actual mesh
generation process.

Four major topics are outlined in the paper. First, the 1D model, domain and a convergence
study are presented. The second major topic includes the development of the local truncation
error series representation, the examination of the first- through the fourth-orders of the
truncation error series, and a description of the subsequent node spacing generation routine.
Third, three methods for LTEA-based grid generation are presented: (1) a strict interpretation
of localized node spacing requirements; (2) use of an imposed maximum multiple of change (a
limit on the percentage one element can vary from its neighbor); and (3) a more practical
method that will permit extension of this routine to 2D problems. The final topic is the
conclusions.

2. MODEL FORMULATION

The governing equations are the generalized wave continuity equation (GWCE) and the
non-conservative momentum equation [3,5]. The linearized 1D GWCE is given by

(2h
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and the linearized, non-conservative momentum equation is expressed as

(u
(t

+g
(h

(x
+tu=0, (4)

where t= time, x=space coordinate, h= the deviation of the free surface from the geoid,
u=velocity in the x-direction, t0=a weighting parameter in the GWCE, which controls the
primitive continuity contribution, g=gravitational acceleration, h=depth relative to the geoid
and t=bottom friction coefficient.
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All simulations performed herein utilize a finite element discretization of Equations (3) and
(4) in space with linear Galerkin finite elements and a finite difference discretization in time [5].
Equation (3) is temporally discretized using a variably weighted, three-time-level, implicit
scheme while Equation (4) is discretized in time using a two-time-level implicit Crank–
Nicholson approximation [5]. In addition, all simulations performed herein utilize standard
boundary conditions: a periodic elevation forcing with an amplitude of 1 m and a period of
12.42 h is implemented on the open ocean boundary and a no-flow boundary condition is
enforced on the land boundary. Results are analyzed for the amplitude and the phase at each
computational grid node.

3. 1D DOMAIN AND A COMPARISON SOLUTION

This study of 1D LTEA-based finite element grids requires a standard domain and an
associated comparison solution. Because the WNAT model domain (Figure 1) is the focus of
current research efforts [9–12], bathymetry that is typical of a slice taken perpendicular to the
east coast of the US, extending out into the deep ocean (Figure 2), is chosen. The depth at the
coast (x=0 in Figure 2) is 20 m. The bathymetry declines linearly to a depth of 200 m, at a
distance of 221 km from the coast (Figure 2, continental shelf break). The depth increases, but
now at a steeper linear slope, until it reaches a depth of 4000 m at a distance of 329.8 km from
the shore (toe of the continental slope). A more gradual linear slope follows until the deep
ocean depth of 5000 m (assumed constant) is attained at a distance of 483.8 km from the shore
(toe of the continental rise).

An approximate solution is used herein to estimate the derivatives for local truncation errors
and to provide a basis to compare solutions from other meshes. Hereafter, this will be called
the ‘comparison solution’. Table I provides spatial and temporal detail for the regular grids

Figure 2. 1D idealized bathymetry.
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Table I. Grids used for the comparison study

Spacing (km)Grid Number of nodes Time step (s)

0.25 8001R.25 1
1.00 2001R1 4

(constant spacing) that are used with the domain of Figure 2 to verify and establish a
comparison solution. Simulations of 10 days of real time are performed and harmonic
solutions are obtained for each of the two meshes. Amplitude errors are normalized as

oA(x)=
Ac(x)−Af(x)

Af(x)
, (5a)

with Ac(x)=coarse grid amplitude solution (the R1 grid in this case) and Af(x)= fine grid
amplitude solution (the R.25 grid in this case). Phase errors are computed in an absolute sense
as

ou(x)=uc(x)−uf(x), (5b)

with uc(x)=coarse grid phase solution (the R1 grid in this case) and uf(x)= fine grid phase
solution (the R.25 grid in this case).

Equations (5a) and (5b) are then individually applied to a generalized Richardson extrapo-
lation based error estimate [22]

ER.25(x)=Fs

�o(x)�
rp−1

, (6)

where Fs=a factor of safety, r=grid refinement ratio and p= the leading order of accuracy
for the method used. Because two regularly spaced grids are evaluated, both of which would
exhibit second-order-accuracy, p=2 is applied, with Fs=1.25 (as recommended by P.J.
Roache, personal communication, 1996).

Equation (6) is computed at each node of grid R.25 and results in the error estimates shown
in Table II, the maximum value of Equation (6) over the entire domain (Table II, Peak) and
the average value of Equation (6) (Table II, Average). This table shows that the comparison

Table II. Richardson extrapolation based errors associated with Grid R.25

PeakError Average

6.34×10−4%Velocity amplitude 2.44×10−1%
Velocity phase 6.58×10−6 rad. 5.33×10−7 rad.

3.48×10−5%1.76×10−4%Elevation amplitude
Elevation phase 6.54×10−6 rad. 4.46×10−7 rad.
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solution from the R.25 grid is a valid basis for use as a benchmark in this 1D study, because
a converging solution of sufficient accuracy is indicated. Solutions from the R.25 grid are used
in all subsequent absolute and relative error analyses. R1 grid velocity and elevation amplitude
and phase solutions are used to approximate derivatives in the following truncation error series
analyses.

4. TRUNCATION ERROR DEVELOPMENT

A harmonic form of the linearized, non-conservative momentum equation is obtained by
substituting into Equation (4) u= û e i. vt and h= ĥ e i. vt, where û, ĥ= the complex amplitudes of
u and h, i. =
−1 and v= the response frequency. The linearized, non-conservative momen-
tum equation is expressed in harmonic form as

i. vû+g
(ĥ

(x
+tû=0. (7)

Equation (7) is spatially discretized by using linear Galerkin finite elements. For a typical
interior node, the linear, harmonic momentum equation becomes

i. v+t

6
(Diûj−1+2Diûj+2Di+1ûj+Di+1ûj+1)+

g
2

(− ĥj−1+ ĥj+1)=0, (8)

where Di=xj−xj−1 with xj=x-coordinate at node j, ĥj ĥ(x)�x=xj
and ûj û(x)�x=xj

, with
i= j−1 and j=2, N−1 (N= the total number of nodes).

The truncation error series is developed by: (1) substituting in Taylor Series expansions for
all nodal variables of Equation (8); (2) separating the spatial orders; and (3) subtracting the
continuous form of the linear, harmonic momentum Equation (7). What follows is the
truncation error series representation, up to the fourth-order, for the linearized, harmonic form
of the non-conservative momentum equation, for variable grids (where elemental length Di

may or may not be equal to adjacent elemental length Di+1):
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For regular grids (Di=Di+1=D):

tME=
i. v+t
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where ûj û(x)�x=xj
and ĥj ĥ(x)�x=xj

. With Equations (9) or (10), the truncation error at any
node j may be computed, provided the node spacings to the left (Di) and the right (Di+1) of
node j are known. Examination of Equations (9) and (10) reveals that as Di approaches Di+1,
the odd-order truncation terms become less significant and ultimately cancel out when Di is
equal to Di+1.

All local truncation errors and local node spacing requirements presented herein are
estimated using the truncation error for the non-conservative momentum Equation (9). Three
major reasons form the basis for this decision: (1) the GWCE incorporates the momentum
equation; (2) a separate study, not included in this paper in the interests of simplicity and
brevity, indicates that the gradients of ĥ are more important than the gradients of h in the
truncation error series [14]; and (3) gradients of û dominate in shallow water, especially on the
shelf and near the shore.

Partial derivatives of ûj and ĥj from Equation (9) are approximated with central differences
by applying the harmonic solutions from the R1 grid simulation at the nodes of the R1 grid
[14]. Equation (9), the local truncation error, is estimated by incorporating the Di values
associated with a variable or a regular grid with these partial derivative approximations.

Figure 3 presents two plots of truncation error, using the first- through fourth-order terms
of Equation (9). The calculations for both plots use the R1 grid velocity and the elevation
solutions for derivative estimations. However, node distributions are provided from the R1
grid (solid curve) and a variable grid that was designed by the procedure described below
(dotted curve). For a regular grid (Di=Di+1), the odd orders cancel out leaving only a plot of
the second- and fourth-orders of the truncation error series (solid curve). The greatest local
truncation error is found at the shelf break. Other relatively high error values occur in shallow
shelf waters, on the continental slope, at the toe of the continental slope and at the toe of the
continental rise.

Figure 3. Local truncation error for the 1D momentum equation.
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5. LTEA GRIDS BASED ON SOLUTIONS FROM A FINE GRID

If the node distributions were ideal and the solutions were perfect, a plot of the local
truncation error would be constant at zero. Although it is impossible to achieve a perfect
solution, an optimal number and distribution of node points can lead to a more uniform
distribution of truncation error (dotted curve, Figure 3).

A dramatic reduction in the cost of the solution (where cost is a function of the total number
of nodal points) is realized when node spacing requirements are based on an LTEA. By
relaxing the grid size in regions where the truncation error is low, a grid is constructed that
displays a more uniform distribution of such. For demonstration purposes, assume that the
magnitude of the peak local truncation error, at the continental shelf break, is sufficiently low
at tmax=2.81×10−7 m/s [2]. Equation (9) is set equal to tmax and the local node spacing (Di)
is determined, which maintains tmax throughout the domain. Note that the procedure is valid
regardless of how one defines the acceptable level of error.

Figure 4 presents a plot of four separate node spacing requirements, which govern the
maximum allowable spacing between nodes for the respective grids of Figure 5. The curves of
Figure 4 (from top to bottom) are generated as follows: using the second-order truncation
terms (solid curve) in Equation (10); with Equation (2), the topographic length scale criterion
(long/short dashed curve); using the second- and fourth-order truncation terms (dashed curve)
in Equation (10); and with Equation (1), the wavelength to Dx criterion (dotted curve).

Figure 4 shows that LTEA-based spacing requirements are reduced by the inclusion of the
fourth-order with the second-order terms. This addition results in a significantly higher level of
resolution in the deep ocean and on the continental rise, when compared with the second-order
only node spacing requirements. Inclusion of the fourth-order with the second-order terms also
results in a node spacing of 12.5 km at the toe of the continental rise compared with the
second-order condition of 36 km. In addition, at the toe of the continental slope, the
LTEA-based method shows a reduction from 16.8 to 8.5 km with the inclusion of the
fourth-order terms.

The reduction in the node spacing requirements is explained by performing an analysis of
the variables (ûj and ĥj) of Equation (10) and their spatial derivatives [14]. The analysis shows
that the second-order truncation terms are competing with the fourth-order truncation terms
in deeper water. In fact, the fifth spatial derivative of ĥj dominates the third spatial derivative
of ĥj in deeper water, i.e. on the continental rise and in the deep ocean. When this occurs, Di

is reduced in order to produce a uniform truncation error distribution. Thus, inclusion of the
fourth-order terms drives down the acceptable level of Di in deeper water. This example
illustrates that the leading order term does not necessarily dominate the overall behavior of the
truncation error.

Figure 4 also provides the node spacing requirements generated using Equation (2), the
topographic length scale criterion (long/short dashed curve), and Equation (1), the wavelength
to Dx, criterion (dotted curve). In order to achieve a resolution similar to that produced with
the second- and fourth-order LTEA, a of Equation (2) is set equal to 0.315. In addition, a deep
ocean spacing of approximately 240 km is used for this employment of the topographic length
scale criterion because this distance is near the upper limit achieved at the toe of the
continental rise. Equation (1), the wavelength to grid size ratio criterion, is set equal to a
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Figure 4. Node spacing requirements based on: a second-order LTEA of the momentum equation; the
topographic length scale criterion; a second- and fourth-order LTEA of the momentum equation; and the

wavelength to Dx ratio criterion.

constant value of 100, which is conservative when compared with values reported in the
literature (540) [10,15], and the grid size is computed (dotted curve in Figure 4) for the 1D
domain presented in Figure 2.

The local node spacing requirements (Figure 4) are used as a maximum allowable limit for
finite element grid generation. The mesh generation procedure is also constrained by the
domain length in that the sum of the local node spacings must equal the domain length.

A grid is also produced by basing it on a first- through fourth-order LTEA. This procedure,
which incorporates the first four terms of Equation (9), is complicated by the fact that adjacent
element sizes, Di and Di+1, must be known. Therefore, computation of node spacings begins at
the continental shelf break where tmax, the peak truncation error, is found and where the
spacing (1 km) required to attain this level of truncation error is known. Application of this
procedure allows an element-by-element progression towards the shoreline, by using the node
spacing to the right when computing a new one to the left. The converse procedure is followed
from the continental shelf break towards the open ocean boundary [14].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 241–261
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Figure 5. A comparison of five variable 1D grids, which are based on: LTEA (V33–2, V39–2–4 and
V46–1–2–3–4); the topographic length scale criterion (V–30–TLS); and the wavelength to Dx ratio

criterion (V39–Wave).

Table III and Figure 5 summarize the resulting grids based on the local node spacing
requirements (Figure 4) and the grid based on a first- through fourth-order LTEA. Table III
designates a name for each of the finite element grids (column 1), which indicates the number
of nodes and the procedure used to produce the mesh. Note that all grids have approximately
the same number of nodes. Figure 5 presents a graphical representation of each of the five
meshes. Vertical dashed lines delineate discontinuities in the topographical bathymetric gradi-
ent. Note that all but one of the five grids, grid V39–Wave, differ significantly from practical
grids reported in the literature, 6iz all except grid V39–Wave define the minimum spacing at
the continental shelf break and not at the shoreline.

Table III. Grids based on alternative node spacing requirements

Based onGrid Imposed maximum
multiple of change

V33–2 No imposed limitSecond LTEA
Second and fourth LTEA No imposed limitV39–2–4

V46–1–2–3–4 First through fourth LTEA No imposed limit
No imposed limitTopographic length scaleV30–TLS

V39–Wave No imposed limitWave/Dx=100

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 241–261
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One major difference sets grid V46–1–2–3–4 apart from all of the others. The extra nodes
of this grid are associated with a gentler relaxation of node spacing when one topographic
gradient transitions to the next (Figure 5). However, the more gradual variation in element
sizes with grid V46–1–2–3–4 is predominantly a result of node placement and not node
addition. This grid has the lowest rate of change in element size.

Grid V30–TLS increases resolution on the deep ocean-side of the shelf break (Figure 5)
because the slope has the highest gradient of depth, which is captured by the first-order
derivative of Equation (2). However, node spacing requirements based on LTEA utilize
derivatives of the response variables and thereby promote increased resolution where there are
high gradients in the solution, which is not necessarily limited to steep topographical gradients.

It should also be noted from Figure (5) that the wavelength to grid size ratio grid,
V39–Wave, displays the highest resolution in the deep ocean and has the most uniform
spacing of any of the five grids.

Each of the five variable grids is used in a simulation of 10 days of real time with a 4 s time
step following the procedure outlined in the Section 2. Error calculations are performed for
each individual simulation by computing Equations (5a) and (5b) at every node of the R.25
grid. The average of the errors is plotted against the number of nodes in the log–log plots of
Figures 6 and 7. Each figure contains four error plots: (a) percent velocity amplitude; (b)
absolute velocity phase; (c) percent elevation amplitude; and (d) absolute elevation phase.
Average errors over the entire domain and over the continental shelf region, from the coastal
boundary to the shelf break, are shown in Figures 6 and 7 respectively.

Because it is known that the Galerkin, linear, finite element solution exhibits between first-
and second-order-accuracy (degraded accuracy appears to be related to boundary condition
implementation [8]), each individual plot in Figures 6 and 7 includes a first-order (dashed line)
and a second-order curve (solid line), which intersects the particular error associated with grid
V46–1–2–3–4 (upright triangle symbol). If the total number of elements for this grid was
doubled or halved, with a size proportional to the existing elements, the resulting error would
fall somewhere between the range of the first- and the second-order curves. This permits the
evaluation of the performance of these finite element meshes on a per node basis. One can
draw a vertical line through any of the error plots and compare it with grid V46–1–2–3–4.
For example, if a point lies above the first- and second-order lines, the associated grid has not
performed as well as grid V46–1–2–3–4. These curves indicate that, in general, the LTEA-
based grid V46–1–2–3–4 outperforms all other grids on a per node basis.

Consider the graphical representations of the grids in Figure 5, in particular the uniform
level of high resolution provided over the continental shelf by grid V39–Wave. On the basis
of this resolution, one may expect this grid to perform well over the continental shelf region,
especially if the source of error is assumed to be local. However, Figure 7 clearly shows that
the wavelength to Dx ratio criterion (asterisk symbol) produces a grid that performs poorly
over the shelf region, relative to grid V46–1–2–3–4.

Of the eight error plots shown in Figures 6 and 7, there is only one occurrence where
another grid clearly outperforms grid V46–1–2–3–4 (Figure 6(b)). This is a direct result of the
extremely low, a6erage absolute velocity phase error associated with grid V39–Wave in the
deep ocean region and the fact that the deep ocean region constitutes over 75% of the entire
domain. Of significance is the fact that grid V46–1–2–3–4 outperforms grid V39–Wave over
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Figure 6. Average errors over the entire domain, associated with the grids of Table III and Figure 5: (a)
percent velocity amplitude; (b) absolute velocity phase; (c) percent elevation amplitude; and (d) absolute

elevation phase.

the deep ocean region with respect to absolute elevation phase. When one takes into account
the fact that grid V46–1–2–3–4 has a deep ocean node spacing of 112.5 km, versus 95 km for
grid V39–Wave (\18% increase in resolution), this becomes an even more dramatic result.
The significance lies in the fact that increased resolution located outside the deep ocean,
illustrated in Figure 5, allows grid V46–1–2–3–4 to outperform grid V39–Wave over the
deep ocean region and that resolution is identified by the LTEA-based method.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 241–261
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Figure 7. Average errors over the continental shelf region, associated with the grids of Table III and
Figure 5: (a) percent velocity amplitude; (b) absolute velocity phase; (c) percent elevation amplitude; and

(d) absolute elevation phase.

Close examination of the plots included in Figures 6 and 7 also indicates that grid V30–TLS
(inverted triangle symbol), which is based on the topographic length scale criterion, performs
well, especially over the continental shelf region. In addition, it is noted from Figure 6 that grid
V39–2–4 (diamond symbol) performs consistently well, particularly relative to grid V33–2
(square symbol).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 241–261
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Figure 8. Percent elevation amplitude errors associated with the LTEA-based grids of Table III and
Figure 5, when normalized by the comparison solution (R.25).

Figure 8 displays a plot of the percent elevation amplitude errors for the LTEA-based grids
versus spatial location. Equation (5a) is used to compute elevation amplitude errors at each
node of grid R.25. The peak error is drastically reduced by inclusion of higher order terms
when generating LTEA-based grids. Note that inclusion of the fourth-order terms in the
LTEA results in an increase of nodes from 33 to 39, with the six extra nodes appearing in the
deep ocean region. The six extra nodes of grid V39–2–4 significantly reduce all measures of
error, not only in the deep ocean but also throughout the domain (short-dashed curve, Figure
8). Furthermore, Figure 8 highlights the importance of incorporating the first through fourth
even- and odd-order terms in the LTEA (long-dashed curve, grid V46–1–2–3–4), which
effectively reduce elemental expansion rates (Figure 5). It is also noted that the errors
associated with grid V46–1–2–3–4 decrease on the continental shelf when compared with grid
V39–2–4.

6. AN IMPOSED MAXIMUM MULTIPLE OF CHANGE CRITERION

A strict interpretation of the LTEA-based node spacing requirements results in the generation
of accurate, efficient 1D grids. However, the ultimate goal is to develop a workable algorithm
based on LTEA for generating 2D finite element grids. This involves taking advantage of what
has been learned thus far from the detailed LTEA in order to enact a numerically sound, yet
simplified, criterion. Ideally, this criterion would limit the LTEA to the second- and fourth-
order truncation error terms, thereby eliminating the need to know adjacent element sizes (a
considerable simplification because it eliminates the domain-wide interdependence of the grid,
which is related to the odd-ordered terms). Note that even if the mesh is generated by
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considering only the even-order terms, the contribution of the odd-order terms to the
solution’s total truncation error will not be eliminated because the following will continue to
be true: �Di−Di+1�]0.

The prerequisite demands may be met by a grid generation algorithm incorporating an
imposed maximum multiple of change. In developing equations for truncation error, it was
noted that as Di approaches Di+1, the odd-order truncation terms become less significant and
ultimately cancel out when Di equals Di+1. As a result, the magnitude and relative importance
of the remaining even-order terms change. Furthermore, note that there are certain stretches
on the plot of LTEA-based node space requirements (Figure 4) where a maximum multiple of
change of 1.4 is imposed. The knowledge of the multiple of change is used in this section to
interpret the node spacing requirements.

Table IV summarizes the grids produced by imposing a maximum multiple of change when
interpreting the LTEA-based node spacing requirements of Figure 4. Three distinct meshes are
generated for each of two different LTEAs: the second-order LTEA; and the second- and
fourth-order LTEA. The maximum multiple of change is given the values of 1.4, 1.2 and 1.1
for each set. If the local node spacing requirements warrant a lower multiple of change than
what is imposed, the lower value is used.

Simulations of 10 days of real time are performed for each grid, as outlined in Section 2,
with a 4 s time step. Figure 9 contains four error plots for the entire domain: (a) percent
velocity amplitude; (b) absolute velocity phase; (c) percent elevation amplitude; and (d)
absolute elevation phase. Each error plot of Figure 9 contains log–log plots of errors
associated with the three LTEA-based grids of the previous section (denoted with plus, × and
asterisk symbols) and six LTEA-based grids, each with a maximum multiple of change
(triangular symbols). When the multiple of change is equal to 1.4, the triangular symbols point
to the left; for a multiple of change equal to 1.2, the triangular symbols point downward; and
for the multiple of change equal to 1.1, the triangular symbols point to the right. Clear
triangular symbols denote grids that are based on a second-order LTEA, while filled triangular
symbols signify those based on a second- and fourth-order LTEA. Each plot also contains
three second-order-accurate curves, one passing through each of the error points associated
with the three LTEA-based, strictly interpreted grids: V33–2; V39–2–4; and V46–1–2–3–4.
In addition, three LTEA-based grids, which utilize coarse grid solutions (circle, square and
diamond symbols) are included and will be discussed in the next section.

Table IV. Grids generated using R1 with an imposed maximum multiple of change

Grid Based on truncation errors Imposed maximum
multiple of change

Second 1.4V46M 1.4
V59M 1.4 Second and fourth 1.4
V66M 1.2 Second 1.2
V78M 1.2 Second and fourth 1.2

1.1V96M 1.1 Second
1.1V106M 1.1 Second and fourth
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Figure 9. Average errors over the entire domain, associated with LTEA-based grids: (a) percent velocity
amplitude; (b) absolute velocity phase; (c) percent elevation amplitude; and (d) absolute elevation phase.

Note the similarity of the curve sets (second-order-accurate curves that are plotted through
the plus, × and asterisk symbols in Figure 9) associated with the three LTEA-based grids of
the previous section. Each set of curves has a large gap between the V33–2 and the V39–2–4
curves, and a relatively close proximity between the V39–2–4 and the V46–1–2–3–4 curves,
with the latter being more accurate on a per node basis. This indicates that the solutions are
converging, as more terms are included in the respective LTEA. In all of the plots of Figure
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9, the error reduction appears to be exhibiting second-order behavior. All but one (Figure 9(b),
V46M–1.4) of the errors associated with the maximum multiple of change grids fall between
the V33–2 and the V39–2–4 curves. With regard to the second-order LTEA-based grids
(Figure 9, clear triangles), this is noteworthy; it indicates that imposing a maximum multiple
of change with the second-order LTEA-based grids results in an error level below that of a
strictly interpreted second-order mesh. None of the error points associated with the multiple of
change grids that are based on a second- and fourth-order LTEA fall to the left of the
second-order curve associated with grid V39–2–4. The multiple of change grids are less
efficient because the conservative multiple of change criterion requires some nodes where they
may not be needed.

7. LTEA GRIDS BASED ON SOLUTIONS FROM A COARSE GRID

Successful implementation of the maximum multiple of change criterion indicates a potential
for generating 2D LTEA-based finite element grids. However, one major requirement holds
back that development; all of the LTEAs have utilized solutions from the highly resolved R1
grid for estimating derivatives. While the use of a grid with 1 km spacing in 1D does not pose
a problem, a fine grid with 1 km spacing when applied to a large 2D domain, such as the
WNAT model domain of Figure 1, would prove to be too computationally expensive.

As an example of an alternative approach, a coarse 101 node grid is defined with a regular
spacing of 20 km (R20 grid). The numerically computed solutions from grid R20 are used to
approximate the derivative terms in Equation (10). Use of the R20 grid stretches out the nodes
at which the derivatives are estimated for the LTEA, which tends to smooth the truncation
errors over larger regions, as is shown in Figure 10. Note how the coarser grid (solid line)

Figure 10. Local truncation error for the 1D momentum equation using the R20 and the R1 grid.
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Table V. Grids generated using R20 with an imposed maximum multiple of change

Based on truncation errorsGrid Imposed maximum
multiple of change

V112M 1.4 Second and fourth 1.4
Second and fourthV124M 1.2 1.2
Second and fourthV136M 1.1 1.1

distributes the peaks relative to the fine grid (dashed line); in addition, note that the magnitude
is larger for the R20 grid, but the spatial error distribution is preserved.

Equation (10) is set equal to the peak truncation error, which in this case is that associated
with the R20 grid solutions, and, subsequently, the minimum local node spacing requirement
will be 20 km, i.e. the resolution of the R20 grid. In order to compare LTEA-based R20 grids
with LTEA-based R1 grids, all local R20 grid LTEA-based node spacing values are multiplied
by 1/20 (smallest spacing required/regular spacing) such that the minimum local spacing is l
km.

Table V shows the grids used for this study of LTEA-based grids from coarse solutions.
Three separate grids are generated, using an imposed maximum multiple of change of 1.4, 1.2
and 1.1. All grids are based on a second- and fourth-order LTEA using the R20 grid to
estimate the derivatives.

As is mentioned in the previous section, the errors associated with 10-day simulations of real
time with 4 s time steps and each of these practical method grids are plotted in Figure 9
(denoted by the circle, square and diamond symbols). On an error per node basis, these grids
correspond nicely with the maximum multiple of change grids of the previous section. The
error continues to decline with second-order behavior, as is seen in the previous section. The
implementation of a more economical approach (this time not only by imposing a maximum
multiple of change but also by using a coarser grid to estimate derivatives in the truncation
series expansions) results in a method that is more accurate overall, but is less computationally
efficient than the strict interpretation.

8. CONCLUSIONS

This study into 1D finite element grid generation demonstrates that LTEA provides a basis for
grid generation by more thoroughly coupling the physics, as represented by discrete equations,
underlying tidal flow and circulation to the node placement process. The competition between
orders of the truncation error series, which indicates that the leading order term is not always
dominant, provides a noteworthy corollary.

The LTEA-based method, as well as the topographic length scale criterion, requires the
highest resolution at the continental shelf break and not at the shoreline, which is contrary to
common practice. It is noted that the grid based on the topographic length scale performed
well in the shelf regions and is suggested that a combination of the topographic length scale
criterion and the wavelength to grid size ratio criterion could provide reasonable grid
resolution. However, the LTEA-based method produces the most accurate grids when
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evaluated on a per node basis. As was noted when comparing Figures 5 and 8, finite element
grids based on an LTEA goes to the source of error, which improves both local and global
results.

The imposed maximum multiple of change is justified as a sound, numerically-based
criterion because it limits the contribution of both even- and odd-order terms of the truncation
series expansions. Finally, a second variation on the LTEA-based method is introduced that
utilizes solutions from a coarse grid (20 km) to estimate derivatives for the LTEA. The success
of these variations are important, because of the enhanced feasibility of a 2D application that
will be more directly coupled to 2D physical features and processes that they are intended to
simulate.
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