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Abstract. The nonlinear frictional behavior of two-dimensional (2-D) and three-dimensional (3-D) 
models are compared in this study of fides in the Bight of Abaco. The shallow depths and the 
existence of an extensive set of tidal elevation data (five astronomical and two overtide 
constituents at 25 stations) from Filloux and Snyder (1979) offer an excellent opportunity to 
compare the effects of different frictional formulations. In addition, previous modeling efforts in 
the bight have consistently overpredicted the M 6 and generally overdamped the O1, K1, and S 2 
tides. The results indicate that although the 2-D and 3-D models may be calibrated to produce 
nearly identical responses for the dominant M 2 tide, there are systematic differences in the 
responses of the primary overrides. These differences are explained using analytical expansions of 
the friction terms and are shown to be due to differences in the terms that are nonlinear in velocity 
and in water level. The investigation concludes that the overgeneration of M 6 and the 
overdamping of secondary astronomical tides will occur in 3-D models as well as 2-D models. 
Although several causes for these problems were considered, improvement in these constituents 
could be achieved only by modifying the standard quadratic friction or flow-dependent eddy 
viscosity relations to reduce the nonlinear frictional effect relative to the linear frictional effect. 
The required modifications suggest the presence of a constant background velocity, residual 
turbulence field, or possibly the need for a more advanced frictional closure. 

Introduction 

The role of friction in modeling the tidal dynamics of 
shallow seas and coastal regions is well appreciated and 
relatively well studied (at least for vertically integrated 
models). However, despite considerable theoretical, 
experimental, and numerical research, the representation and 
parameterization of frictional processes remains a difficult 
aspect of modeling. Indeed, adjustment of friction 
parameter(s) remains the primary means of calibration for 
most hydrodynamic models. 

In coastal waters, tides are generally classified as 
astronomical tides, compound tides, or overrides. 
Astronomical tides result from the gravitational forces 
exerted by the Sun and the moon. Compound tides and 
overtides arise from the nonlinear interactions between 

constituents; they are often called shallow water tides because 
nonlinear phenomena (e.g., bottom friction) generally become 
important in shallow regions. Compound tides result from 
interactions between two or more constituents of different 
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frequency, whereas overtides result from interactions of a 
single constituent with itself or its overtides. 

The origin and numerical simulation of shallow water tides 
has been the focus of much research in recent years (see 
LeProvost [1991] for an excellent review). Most of this work 
has been done using two-dimensional (2-D) vertically 
integrated governing equations that parameterize friction at 
the bottom as a quadratic function of the depth-averaged 
velocity. Particular emphasis has been placed on 
understanding the influence of the quadratic friction 
parameterization in rivers [Godin, 1991; Parker, 1991] and 
shallow seas [Snyder et al., 1979; Pingree, 1983; LeProvost 
and Fornerino, 1985; $peer and Aubrey, 1985; Walters, 
1987; Pingtee and Griffiths, 1987; Westerink et al., 1989; 
Bowers et al., 1991 ]. 

More recently, several three-dimensional (3-D) tidal 
models have appeared [e.g., Walters, 1992; Davies, 1993a; 
$ucsy et al., 1993; Aldridge and Davies, 1993; Davies and 
Aidridge, 1993; Lynch and Naimie, 1993]. In these models, 
frictional processes occur in the water column as well as at the 
bottom. Friction in the water column is often described by a 
flow-dependent eddy viscosity [e.g., Davies and Aidridge, 
1993], while friction at the bottom is computed using either a 
no-slip condition or a slip condition. 
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In the present study we examine the effects of friction on 
the tides in the Bight of Abaco, a shallow tidal embayment 
located in the northernmost part of the Bahama Islands. The 
shallow depths and varied topography of the region coupled 
with the existence of an extensive set of tidal elevation 

observations (25 stations with data available for the Ki, O1, 
N 2, M 2, S 2, M 4, and M 6 constituents) offer an interesting 
challenge for a nonlinear tidal model. 

Two-dimensional numerical tidal computations for the 
Bight of Abaco were first carried out by $idjabat [1970] and 
later extended by Snyder et el., [1979] (hereinafter referred to 
as S79) and Westerink et el. [1989], (hereinafter referred to as 
W89). Although the S79 and W89 models could be tuned to 
successfully reproduce M 2 elevation amplitudes and phases, 
they were less satisfactory for the overtides and some of the 
secondary astronomical constituents. In particular, the M 6 
amplitudes were consistently overpredicted, while the O1, K1, 
and S 2 tides were generally underpredicted in the interior 
sections of the bight. 

The generation of the M 6 overtide from the M 2 
constituent by the quadratic friction term in a 2-D model is 
one of the classical results from early analytical studies of 
tidal dynamics [Proudman, 1953]. In the typical case of a 
dominant M 2 constituent the M 6 response is nearly always 
too high in cases where the M 2 is modeled separately from 
other astronomical constituents [Pingtee, 1983; LeProvost 
and Fornerino, 1985; LeProvost, 1991; Parker, 1991]. The 
M 6 response is generally reduced when additional 
astronomical constituents are included in the model. One 

reason is that the friction coefficient in the M2-only 
simulations must compensate for the absence of other 
friction-producing constituents [Parker, 1991] and is 
therefore too high, creating too strong a source of M 6 
overtide. A second reason is that compound tide interactions 
contribute to the reduction in the M 6 overtide. For example, 
M 2 -N 2 and M 2 -S 2 interactions, which produce the 
2MN 2 and 2MS 2 semidiurnal tides, will combine with the 
M 2 to create M 6 contributions that are 180 ø out of phase 
with the primary M 6 contributions of the M 2 constituent. 
LeProvost and Fornerino [1985] showed a significant 
reduction in M 6 in the English Channel when these 
secondary waves were included in their model. In the Bight of 
Abaco, W89 found that the addition of the 2MN 2 and 2MS 2 
constituents significantly reduced the amplitude of the M 6 
overtide. However, even after accounting for these compound 
tide interactions, the M 6 constituent remained overpredicted 
by about 50%. 

The overdamped secondary astronomical tides encountered 
by S79 and W89 are also consistent with previous two- 
dimensional model results. The overdamping has been noted 
to affect semidiurnal tides as well as diurnal tides [LeProvost 
and Fornerino, 1985; LeProvost, 1991; Bowers et el., 1991]. 

In summary, considerable progress has been made in 
modeling tides in shallow water systems in general and the 
Bight of Abaco in particular. Despite this progress, however, 
discrepancies remain between observational data and the 
response of (two-dimensional) tidal models in the Bight of 
Abaco. These discrepancies appear to be common to other 
tidal models and related to the representation of friction in 
the models. 

In the present study we examine the frictional formulations 
of a two-dimensional and a three-dimensional tidal model. 

The primary difference between the models is that in the two- 

dimensional case, bottom stress is the only source of friction, 
whereas in the three-dimensional case, friction occurs in the 
water column and at the bottom. The responses of the models 
are compared in the Bight of Abaco, with particular focus on 
the M 2 overtides. Following this, approximate expansions 
for the friction terms are presented for both models and used 
to interpret the model responses. These expansions lead to a 
final set of runs which demonstrate the need to include both 

linear and nonlinear frictional effects in the Bight of Abaco. 
While several previous investigations have used M 2 

elevations and currents to examine differences between 2-D 

and 3-D models [e.g., $ucsy et el., 1993] and 3-D models with 
different eddy viscosity formulations [e.g., Davies, 1993a, 
Davies and Aidridge, 1993], this study uses the M 2 overtides 
and the secondary astronomical tides as a means of comparing 
models. Our investigation seeks to determine whether a 3-D 
model offers any advantage in an area where 2-D models have 
consistently failed. 

Model Description 

This study was conducted using the circulation model 
ADCIRC which includes options for either two-dimensional, 
depth-integrated (2DDI) or three-dimensional (3-D) solutions. 
A summary of key model features is provided below; 
considerably more detailed presentations of the model arc 
given by Luettich et al. [1992, 1994], Kolar et al. [1994], and 
Westerink et al. [1994]. 

ADCIRC-2DDI solves the fully nonlinear shallow water 
equations in either spherical or Cartesian coordinate systems. 
Owing to the limited size of the Bight of Abaco, wc use the 
Cartesian form of the equations 

c• (HV) 0 (1) ac a (-v)+ = -37 +Txx 
8U 8U 8U 

c•t + U"•xx + V'•- - JV 

=-'•x Z + g(C-øcrl +•' Mx +Ox + Po Po 

3V u 3V -37 + 

(2a) 

--• z+g(C-crrl 
1 •y •by 

+•- My +Dy +•-• po po 

where 

U,V 
H 

h 

f 

•'bx , •'by 

Mx,My 

surface elevation relative to the 

undisturbed water level; 
depth-averaged x and y velocities; 
total depth (H -- h + •'); 
bathymetric depth; 
Coriolis parameter; 
surface stresses in the x and y 
directions; 
bottom stresses in the x and y 
directions; 
horizontal turbulent momentum 

diffusion; 

(2b) 
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Dx,Dy horizontal momentum dispersion 
(resulting from vertically integrating 
the advective terms); 
Newtonian equilibrium tide potential; 
effective Earth elasticity factor; 
reference density of water. 

For the present study the atmospheric pressure gradients, 
tidal potential terms, surface stresses, and horizontal 
momentum diffusion terms are assumed to be zero. ADCIRC- 

2DDI also neglects the momentum dispersion terms and 
relates the bottom stress to the depth-averaged velocity using 
a quadratic friction relation: 

`rbx Cf2d(U2+ }r2) 1/2 = U (3a) 
Po 

`rby Cf2d (U 2 + }r2 )1/2 = V (3b) 
Po 

where Cf2 d is the two-dimensional friction coefficient. 
Prior to being discretized, the continuity and momentum 

equations are combined into a generalized wave continuity 
equation (GWCE) which has been shown to have superior 
numerical properties to a primitive continuity equation when 
a finite element method is used in space [Lynch and Gray, 
1979; Kinnmark, 1985]. The GWCE is solved together with 
the primitive momentum equations using a Galerkin finite 
element method on linear triangles in space and a finite 
difference method in time. 

ADCIRC-3D employs a mode-splitting technique to 
separate the horizontal and vertical problems. The solution 
for the surface elevation is obtained from the GWCE and 

constitutes the "external mode," while the solution for the 
vertical profile of velocity constitutes the "internal mode." 
Many problems of practical interest involve boundary layer 
flows that are characterized by velocity profiles that vary 
rapidly in space. Traditional internal mode solutions require 
discrete representations of velocity and therefore demand 
considerable resolution in high-gradient regions to 
accurately represent the velocity profile (we call these 
velocity solutions or VS). However, in contrast to velocity, 
shear stress profiles vary slowly over the depth in boundary 
layers. To take advantage of this, an alternate internal mode 
solution strategy has been developed that discretizes the 
shear stress (we call this a direct stress solution or DSS) 
[Luettich and Westerink, 1991; Luettich et al., 1994]. In 
shallow water a DSS can be accomplished quite efficiently 
using substantially fewer nodes than a VS (even when the 
latter is implemented on a stretched grid that is optimized for 
a logarithmic velocity profile). Comparisons between a 3-D 
DSS model and a 3-D VS model in the Bight of Abaco showed 
that when a no-slip bottom boundary condition was used, the 
VS (on a stretched grid) and the DSS (on a uniform grid) 
converged to essentially identical solutions, although the 
DSS required three to five nodes over the vertical, while the 
VS required 20-30 nodes over the vertical. 

The derivation and behavior of the DSS internal mode 

equations are described in detail by Luettich et al. [1994]. 
Briefly, these equations are obtained by taking the vertical 
derivative of the traditional three-dimensional momentum 

equations (assuming a hydrostatic pressure distribution). If 
the standard eddy viscosity expression is inverted, 

• = `rzx (4a) 
• EzPo 

• = *•/ (4b) 
• EzPo 

where u and v are the depth-dependent velocity components 
and E z is the eddy viscosity; the vertical derivatives of 
velocity in the differentiated momentum equations can be 
replaced by shear stresses, yielding 

'•' EzPo - f EzPo H2po o•0 '2 

= E zpo + f E"o H2po '2 
In (5a) and (5b), A x and Ay represent the combined 
horizontal advective and diffusive terms, and a general 
terrain-following cy- coordinate system has been used in 
which cy = a at the free surface and cy = b at the bottom. 

Three different eddy viscosity formulations (with magnitudes 
dependent on the flow field) were used in this study. 

For the present study the "local" form of the DSS equations 
is used in which the horizontal advective and diffusion terms 

are neglected in (5a) and (5b). Scaling arguments show that 
this is a reasonable assumption in shallow water when the rate 
of vertical momentum transport is much greater than the rate 
of horizontal momentum transport [Luettich et al., 1992]. 

Velocity is obtained from the solution for stress by 
integrating (4) from the bottom up 

H do' (6a) U = Ul, + (a b) • ̀ rzx - b EzPo 

H do' (6b) 
-- b E zPo 

where u b and v b are bottom slip velocities. A no-slip bottom 
boundary condition is implemented by setting u b and v b to 
zero. Alternatively, a slip condition can be implemented by 
relating u b and v b to the bottom stress using a standard 
quadratic expression 

( )1/2 ̀rbx (7a) U b U• +¾• /•oCf 3d 

2) q2 'roy (7b) u} = oC3---7 
where Cf3 d is the three-dimensional friction coefficient. 

Equations (Sa) and (Sb) are solved using a Galerkin finite 
element method with linear basis functions in space and a 
finite difference method in time. The use of linear basis 

functions for 'rzx and 'r•, coupled with an eddy viscosity 
that is assumed to be piecewise linear over the water depth, 
allows a simple closed form solution to (6) and therefore 
facilitates the recovery of velocity from stress. The vertical 
differentiation that leads to (Sa) and (Sb) has the effect of 
removing the depth-averaged flow information from these 
equations. Therefore the internal mode solution is obtained 
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by solving (Sa) and (Sb) simultaneously with the 2DDI 
momentum equations. We note that in the 3-D solution the 
momentum dispersion terms in the GWCE and 2DDI 
momentum equations are evaluated from the velocity profile 
information and are included in the computations. Also, in 
the 3-D solution the bottom stress terms in the GWCE and 

2DDI momentum equations are evaluated explicitly and 
therefore (3a) and (3b) are not used. 

Model Runs 

The Bight of Abaco (Figure 1) is located on Little Bahama 
Bank in the northernmost portion of the Bahama Islands. The 
bight is approximately 100 km long by 40 km wide and is 
bounded by the island of Abaco to the south and east and by 
the islands of Little Abaco and Grand Bahama along the 
northern edge. The Northwest Providence Channel forms the 
western boundary. 

The bathymetry of the bight is shown in Figure 1. Water 
depths are very shallow, ranging from 1 to 9 m. A sill region 
of 2- to 5-m depth exists immediately inside the ocean 
boundary, while a 7- to 9-m depression covers a significant 
portion of the northern region. The rapid drop off to water 
depths of 1000-2000 m immediately outside the bight 
ensures that shallow water tides within the bight are generated 
locally. 

Bottom conditions also vary widely. The sill region is 
marked by sand waves, many of which are of the order of 1 to 
3 m and by the presence of several small shoals. Small muddy 
mounds populate most of the northern reaches of the bight, 
while the southern region is characterized by a thin sediment 
cover over rock [Filloux and Snyder, 1979]. From a modeling 
perspective this range of bed types could be represented by 
spatially variable friction coefficients, with higher values in 
the sill region and lower values in the interior sections of the 
domain. Reported data for different bottom types suggest 
that a value of Cf2 d in the range 0.006-0.01 may be 
appropriate near the sill, while values in remaining areas are 
probably more typical, e.g., Cf2 d -0.003 [Soulshy, 1990]. 

Filloux and Snyder [1979] collected detailed tidal 
elevation data at 25 locations within the bight (see Figure 1 
for station locations). These have been analyzed for the Kl, 
Ol, N 2, M 2, and S 2 astronomical constituents as well as for 
the M 4 and M 6 overtides. The elevation data were gathered 
over a sequence of three 1-month field studies, although only 
15 pressure sensors were available at any one time. As a 
result, some of the stations were occupied on more than one 
occasion, and up to three amplitude and phase results were 
reported at these sites. 

The variability of the amplitude measurements by Filloux 
and Snyder [1979] were reported as basin-wide, relative rms 
errors by W89. We have used the same amplitude error 
measure in this study 

s.m= 
I •;(xl'k)-•11 I cj (xl'k) 

Y. Y• •;(xl,k) 1=1 k=l 

(8) 

where • rm. is the measured elevation amplitude component for 
th•J , 

the j harmonic, œ is the number of stations with multiple 

measurements for a constituent, and K l is the number of 
measurement values at location l. In addition, we have 
developed a similar basin-wide, rms error for the phase 
measurements 

p.m= [ 12 • • om 1 • Om(Xl, k) /:1 I J (Xl'k)-•ll k:l j 
(9) 

where 0. m is the measured elevation phase component for the 
jth J ß harmonic and K•. is the total number of measurements 
from stations occupied more than once; i.e., 

L t 

K• = Y•K 1 . 
1=1 

These errors are listed in Table 1 and provide an experimental 
error baseline to be taken into account in the interpretation of 
model versus data comparisons. Unfortunately, no similar 
data set exists for tidal velocity. 

The horizontal grid used in the model studies is shown in 
Figure 1. The grid consists of 926 nodes and 1696 elements 
and has a grid spacing that ranges from 0.8 to 2.8 km. The 
average nodal spacing in the grid (2.5 km) is approximately 
half that used by S79 and W89. Preliminary grid convergence 
studies suggested that the present grid achieved a well- 
converged solution. 

Boundary conditions consisted of elevation amplitudes 
and phases interpolated from the observational data of 
Filloux and Snyder [1979]. Although previous studies in the 
bight have assumed that nonlinear waves are fully reflected at 
the ocean boundary (and thus have specified boundary 
conditions for astronomical constituents only), model results 
suggest that this assumption may not be entirely correct since 
both the M 4 and M 6 amplitudes were underpredicted near 
the ocean boundary. Sensitivity analyses conducted to 
examine the effect of open boundary conditions on the M 4 
and M 6 constituents showed that agreement with data was 
marginally better when these constituents were specified. 
However, there was no change in the bias of the M 6 
predictions. The ranges of the amplitudes and phases for the 
boundary forcings used in the model are listed in Table 2. 

Model results were analyzed using the least squares 
harmonic analysis method with up to 36 response frequencies 
(for the multiconstituent forcing). Basin-wide statistics of 
the model performance compared with the data were computed 
on a constituent by constituent basis. 

For elevation amplitude a basin-wide, relative rms error 
between the model and the measured data was computed as 

• • [•';(Xl, k)-•'j(Xl)l 2 /=1 k=l 

/-1 k-I 

(10) 

where L is the total number of measurement sites, K l is the 
number of data points at site l, •...m is the measured elevation 
amplitude for the jth . l constituent, and •'j is the computed 
elevation amplitude for the jth constituent. 
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Table 1. Basin-wide Average Errors in Measured Elevation Amplitude and Phase 

O• K• N 2 M 2 S 2 M 4 M 6 

Amplitude, % 3.0 8.0 13.2 3.0 14.3 ! 1.6 12.0 
Phase, deg 2.3 5.2 11.2 3.3 10.4 9.8 12.9 

For elevation phase a basin-wide rms error between the 
model and the measured data was computed as 

l•l•__tliOjm(Xl, k)_Oj(Xl)]2 •2 
Kr 

(11) 

where 0. m is the measured elevation phase for the jth 
ß J 

constituent, Oj is the computed elevation phase for the jth 
constituent, and K T is the total number of measured values 
for all measurement sites. To complement these statistics, we 
also present the number of stations where the model 
overpredicts and underpredicts measured amplitudes and 
phases. 

2-D Model Runs 

In order to establish approximate friction parameters for 
subsequent runs with full constituent forcing, an initial set of 
runs was conducted with the 2-D model using the M2, M4, 
and M 6 forcing and Cf2 d values ranging from 0.003 to 
0.012. Several values of Cf2 d were tested in this range, and a 
sample of the results is shown in Table 3. The results from 
these preliminary runs show that increasing the friction 
coefficient lowers the basin-wide elevation amplitude 
response of all constituents. Within the range of friction 
parameters considered, the lowest M 2 elevation amplitude 
and phase prediction errors occurred when Cf2 d = 0.0095, 
which is consistent with the findings of S79 and W89. In 
addition, the M4 errors were also near their minimum for this 
value of Cf2 d. However, neither the amplitude nor the phase 
errors were minimum for the M 6 constituent. Rather, the M 6 
constituent was overpredicted by approximately 87%. 

It should be noted that the interaction of the M 2 
constituent with itself through the quadratic friction term was 
the dominant nonlinearity responsible for the generation of 
the M 6 constituent. Trial runs with bottom friction as the 

Table 2. Open Boundary Forcing Data 

Tide Amplitude, Phase, 
cm deg 

Ol 7.2-7.9 202-212 
Kl 8.6-10.0 212-219 
N2 9.7-10.3 341-10 
M2 38.2-39.4 6-14 
S 2 5.6-6.3 51-56 
M 4 0.2-0.3 100-144 
M 6 0.2-0.3 228-351 

Phases are relative to the equilibrium tide at 
Greenwich. 

only nonlinear term produced an M 6 response essentially 
identical to that given above. 

Given the approximate value of Cf2 d = 0.0095, a second 
set of runs was completed using all of the measured tidal 
constituents. Several values near Cf2 d = 0.0095 were 
considered, and in each case the model was run for 40 days, 
with a harmonic analysis of the last 30 days. The lowest M2 
elevation errors were achieved when C f2 d = 0.0085 (Table 4). 
Although the amplitude error was identical at C f2 d = 0.009, 
the distribution of the error was somewhat worse. As noted in 

the introduction, the reduction in the optimum friction factor 
from the initial set of runs reflects the contribution of the 

secondary constituents to the frictional balance in the bight, 
as the secondary waves provide some complementary 
damping of the M 2 constituent through the quadratic friction 
term. 

In general, the elevation amplitude errors for the Ol, Kl, 
S2, and M 4 tides are reduced as the friction factor is 

Table 3. 2-D Model Results, M2, M4, and M 6 Forcing 

Measure M 2 M 4 M 6 

C f2d -' O. 003 
Average amplitude, m * 0.2906 0.0138 0.0121 
Amplitude error, % 49.3 99.9 140.7 
Phase error, deg 11.0 35.6 28.2 
Amplitude overpredicted 20 20 20 
Amplitude underpredicted 4 4 4 
Phase overpredicted 10 6 6 
Phase underpredicted 14 19 19 

C f 2d = O. 006 
Average amplitude, m* 0.2310 0.0093 0.0108 
Amplitude error, % 18.1 36.2 110.0 
Phase error, deg 6.7 26.0 27.6 
Amplitude overpredicted 19 18 21 
Amplitude underpredicted 5 6 3 
Phase overpredicted 11 11 7 
Phase underpredicted ! 3 14 18 

C f2 d = 0.009.5 
Average amplitude, m* 0.1998 0.0074 0.0100 
Amplitude error, % 7.7 22.4 87.4 
Phase error, deg 5.3 25.7 30.0 
Amplitude overpredicted 11 12 21 
Amplitude underpredicted 13 11 3 
Phase overpredicted 15 12 9 
Phase underpredicted 9 13 16 

C f 2d = O. 012 
Average amplitude, m* 0.1860 0.0067 0.0096 
Amplitude error, % 10.8 26.8 76.4 
Phase error, deg 5.4 26.5 32.1 
Amplitude overpredicted 4 8 21 
Amplitude underpredicted 20 16 3 
Phase overpredicted 17 12 10 
Phase underpredicted 7 13 15 

C f2 d is the two-dimensional friction coefficient. 
* Steady (zero-frequency) values of average amplitude are as 

follows: for Cf2 d =0.003,0.0214; for Cf2 d =0.006, 0.0207; 
for Cf2 d =0.0095,0.0205; and for Cf2 d =0.012,0.0204. 
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decreased, while the errors for the N 2 and M 6 tides increase 
with decreasing friction factor. A marked improvement 
occurred in the M 6 constituent versus the initial set of runs 
(the amplitude error is reduced from 87.4 to 35.5%) due to the 
addition of the secondary astronomical constituents. 
Comparing Table 1 and Table 4 shows that the basin-wide 
amplitude and phase errors for all but the K l constituent were 
significantly larger than the average observational 
variability. Also, Table 4 shows that the distribution of errors 
was toward overdamping for the Ol, K•, and S2 constituents 
and underdamping for the M6 and N 2 constituents. 

The M6 amplitude error was significantly lower than the 
final optimum result of W89 (35.5 versus 53%). The most 
likely cause for this improvement is that the time-stepping 
model contains a more complete representation of the 
nonlinear constituent interactions than the harmonic in time 

model used by W89. Small improvements may also be due to 
the inclusion of M6 boundary forcing and to the refined grid 
used in the present study. 

Computed depth-averaged M 2 tidal current ellipses for the 
2-D run using Cf2a = 0.0085 are shown in Figure 2. Currents 
are strongest in the sill region, where speeds may exceed 50 
cm/s and are considerably weaker in the deeper basin. In 
addition, the ellipses are highly rectilinear, a feature 
important to the frictional processes occurring in the bight 
(see later discussion). 

The value of Cf2 d = 0.0085 obtained with the full set of 
tidal constituents is high in comparison with values typically 
used in tidal modeling studies. Two possible explanations 
for this high value were identified. First, as noted above, the 
value of Cf2 d '- 0.0085 may actually be a reasonable choice 
for the sill region which is characterized by sand waves, 
although it is probably not representative of the bottom 
features found in the northern depression or the eastern and 
southern sections of the bight. Second, the presence of sand 
waves introduces a large amount of uncertainty in the 
bathymetric depth in the sill region. Since the continuity 
equation only requires the correct horizontal flux (UH, VH), 

it may be possible to obtain a reasonable calibration to M 2 
surface elevation data despite having incorrect bathymetric 
depths, provided the depth-averaged velocities are also 
incorrect (e.g., if h is too large, U and V must be too small). 
In the momentum equation the bottom friction term (equation 
(3)) behaves as U2/H and therefore will also be affected by 
incorrect bathymetry (e.g., if h is too large, the bottom 
friction term will be too small). This can be compensated for, 
however, using the friction coefficient C f2 a (e.g., if h is too 
large, an erroneously high value of C f2 a will be required to 
calibrate the model). 

To test these ideas, we first made a series of runs using the 
multiconstituent forcing and a spatially varying friction 
factor. Typically, three friction factor regions were selected to 
allow a high friction factor in the sill region, more traditional 
values (e.g., Cf2a = 0.003) in the northern and eastern parts of 
the bight, and a narrow band of medium values as a transition. 
In general, we found that most of the dissipation of the 
astronomical constituents and most of the nonlinear 
interactions occur in the areas where velocities are highest, 
i.e., the sill region. The effect of frictional processes (e.g., M• 
production) and hence sensitivity to bottom friction 
parameters is greatly reduced in other areas of the bight where 
currents are weak. Consequently, a spatially variable friction 
factor or, in the 3-D case, a spatially varying bottom 
roughness can be used but has a minimal effect on the overall 
model results. 

In a second series of runs we used a friction factor of Cf2•l 
= 0.003 and reduced the water depths. The results indicated 
that a successful M 2 calibration could be achieved by 
reducing the depth by approximately one third. However, this 
caused the basin-wide error in the M 4 overtide to triple (M 4 
was substantially overpredicted throughout the domain) and 
therefore cannot be considered a viable explanation for the 
high friction coefficient. Additional sensitivity runs showed 
that the overtides were much more sensitive than 
astronomical tides to changes in the depth distribution. 
Overall, the original depth distribution produced the smallest 

Table 4. 2-D Runs With All Consti.tuents and Full Nonlinear Tidal Interactions 

Measure O l Kl N 2 M2 S2 M 4 M6 

C f2 d = 0.009 
Amplitude error, % 7.3 9.4 19.6 7.7 19.4 23.1 33.6 
Phase error, deg 4.9 7.4 13.1 5.3 15.9 25.8 27.9 
Amplitude overpredicted 3 5 15 9 3 10 20 
Amplitude underpredicted 21 19 9 15 21 13 4 
Phase overpredicted 20 20 19 16 19 14 7 
Phase underpredicted 5 5 6 9 6 11 18 

C f2 d = 0.0085 
Amplitude error, % 6.2 8.6 20.2 7.7 18.9 21.9 35.5 
Phase error, deg 4.5 7.0 13.0 5.4 15.8 25.7 27.7 
Amplitude overpredicted 6 6 15 13 4 10 20 
Amplitude underpredicted 18 18 9 11 20 12 4 
Phase overpredicted 20 20 19 15 19 14 7 
Phase underpredicted 5 5 6 10 6 11 18 

C f 2 d -- 0.008 
Amplitude error, % 5.3 8.1 21.0 8.2 18.5 21.3 37.3 
Phase error, deg 4.2 6.7 12.9 5.4 15.8 25.5 27.4 
Amplitude overpredicted 7 7 15 16 7 12 20 
Amplitude underpredicted 17 17 9 8 16 12 4 
Phase overpredicted 19 19 18 14 18 14 7 
Phase underpredicted 6 6 7 11 7 11 18 
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20 cm/s 

Figure 2. Depth-averaged M 2 current ellipse for 2-D run 
using Cf2 d = 0.0085. 

errors in the overtides. On the basis of these findings we 
retain a constant friction coefficient or roughness height 
throughout the domain that is most representative of the sill 
region, and we use depths as originally reported by Filloux 
and Snyder [ 1979]. 

3-D Model Runs 

Given this baseline of 2-D model results, we next consider 
the response of the 3-D model. While frictional effects in the 
2-D model are represented solely by the bottom stress 
parameterization, in the 3-D model they are contained in the 
eddy viscosity term and in the bottom boundary condition. A 
variety of eddy viscosity formulations have been proposed in 
the literature. We considered three of these in our 3-D model 

runs as follows' case 1 is E z = AiH (U 2 + V2) 1/2, constant over 
the water column; case 2 is E z = A2(U 2 + V2), constant over 
the water column; and case 3 is E z = •'u,z o at the bottom, 
E z = •cu,(h+z+z o) over the lower 20% of the water 
column, and E z = O. 2 •'u,H over the upper 80% of the water 
column. 

Here A l and A 2 are free coefficients, u, is the shear 
velocity, z o is the bottom roughness, and tc = 0.41. The 
parameter A 2 is typically expressed as A 2 = K1/tOl, where K 1 
is a dimensionless coefficient (sometimes taken as 
2.0 x 10 -5) and to I is a characteristic frequency of the order 
of 1.0 x 10 -4 [Davies and Aidridge, 1993]. 

Although eddy viscosities that are constant over the depth 
are frequently used in modeling studies, they are incapable of 
representing the bottom boundary layer in a physically 
realistic manner. Therefore, when this type of eddy viscosity 
is used, it is appropriate to parameterize the boundary layer 
using a bottom slip condition. The case 1 formulation is 
useful in areas where the bottom boundary layer thickness is 
limited by the water depth [Davies and Aidridge, 1993]. while 
the case 2 formulation is typically used in deep water where 

boundary layers are rotationally limited [Davies and Furnes, 
1980]. Although case 1 is more appropriate in the shallow 
waters of the Bight of Abaco, both formulations were 
considered to determine the effects on model response. In 
either case, two parameters (A 1 or A 2 and the slip coefficient 
Cf3d) are introduced into the model. 

A unification of case 1 and case 2 formulations has been 
presented by Aldridge and Davies [1993], in which H in case 
1 is replaced by A, a length scale proportional to u,, when A 
is less than H. This single formulation may be appropriate in 
both shallow and deep water since the smaller-scale A is used 
when the boundary layer does not extend over the entire 
depth. While this formulation could be used in the present 
study, its effect would be essentially equivalent to case 1 due 
to the shallow depths found in the bight. 

The case 3 formulation is based on observational and 

theoretical studies of boundary layers which suggest the eddy 
viscosity is proportional to •cu,z near the bottom. The eddy 
viscosity relationship used in case 3 is based on 
measurements made in tidal currents [Bowden et al., 1959] 
and is consistent with the use of a no-slip condition at the 
bottom. One advantage of the DSS technique is that u, is 
derived directly from the computed bottom stress, rather than 
the velocity profile. (The importance of high vertical 
resolution for computing shear-velocity-dependent eddy 
viscosity in a VS model was demonstrated by Davies 
[1993b]). Using this eddy viscosity formulation, only one 
parameter (the bottom roughness) is introduced into the 
model. 

In the comparisons which follow we selected 3-D model 
parameters to produce M 2 elevation amplitudes as close as 
possible to our "best" 2-D response (using Cf2cl = 0.0085) 
and then concentrated on the associated responses at other 
frequencies. In case 1 and case 2 the parameters A 1 and A 2 
may be applied in different combinations with C f3 • to yield 
very similar elevation responses. These combinations 
primarily affect the water column shear, so without measured 
velocity profiles it is impossible to reduce the possibilities 
further. However, knowing that these eddy viscosity 
formulations are inappropriate for boundary layer flows, we 
attempted to minimize the presence of a bottom boundary 
layer by using the lowest slip coefficient possible. Model 
tests indicated that Cf3 • values less than 0.01 were unable to 
provide proper damping of the M 2 constituent as it 
propagated over the sill region. 

With Cf3 • established we then calibrated the models by 
varying A 1 or A 2 . The closest agreement between 2-D and 3- 
D models was achieved using a slip coefficient of Cf3d = 0.01 
together with A1 - 0.038 (case 1) and A2 - 0.4 s (case 2). 
Since these calibrated values of A l and A2 are higher than 
those typically used (and Cf3 • is nearly equal to Cf2a) , one 
may expect vertical shear to be near zero. This fact suggests 
that the 3-D models will behave essentially as the 2-D model. 
However, some differences in the overtides were observed, 
and, as shall be discussed, these differences are related to the 
friction formulations used in the models. 

For 3-D case 3 the bottom roughness z o was adjusted to 
produce similar 2-D and 3-D M 2 elevation results; the 
calibrated roughness value was z o = 1.4 cm. Using the 
relation for rough turbulent flow (z o = ks/30), z o 
corresponds to an equivalent Nikuradse diameter k s of 0.4 m, 
approximately the size of the sand waves in the sill region. 
Spatially variable roughness values were not examined, as 
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results from the 2-D runs indicate model response is 
insensitive to friction parameters in areas away from the sill. 

2-D/3-D Model Comparisons 

The results from the 2-D and 3-D runs are compared in 
Figures 3-5. In each of the figures, elevation amplitudes from 
the 3-D model are plotted against elevation amplitudes from 
the 2-D model for all nodes in the domain. There is 

essentially no difference in the 2-D and 3-D, case 1 model 
results (Figure 3), and the plots for both astronomical and 
overtide constituents are virtually straight lines. The 
secondary astronomical constituents in the 3-D, case 2 model 
are similar to those in the 2-D model (Figure 4). However, the 
M 2 overtides in the 3-D, case 2 model are systematically 
larger than their 2-D counterparts. The secondary 
astronomical constituents in the 3-D, case 3 model also have 

the same basic behavior as the 2-D model (Figure 5). The 
largest differences between the 3-D, case 3 model and the 2-D 
model again occur in the override constituents. The M 4 
response is consistently higher in the 3-D model, while the 
M 6 response, though similar, exhibits significantly more 
scatter and a slight reduction, on average. 

The comparisons presented above are supported by the 3-D 
results included in Table 5. As shown in Table 5, the 

amplitude errors for the 3-D, case I model are nearly identical 
to those for the optimal 2-D run (Table 4). In the 3-D, case 2 
result the M 6 amplitude error is significantly larger than in 
the 2-D model (52.8 versus 35.5%) and the M 4 amplitude is 
overpredicted at five more stations. The 3-D, case 3 model 
produced a small increase in the M 4 elevation amplitude 
error as well as a greater number of overpredicted stations. 
The overall M 6 elevation amplitude error in this case is quite 
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Figure 3. Results for 3-D, eddy viscosity case 1 run versus 2-D run. Results are plotted at all nodes in the 
domain. 
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Figure 4. Results for 3-D, eddy viscosity case 2 run versus 2-D run. Results are plotted at all nodes in the 
domain. 

close to the 2-D error. In general, phases are less sensitive 
than amplitudes to the various model formulations. 

In summary, although the 2-D and 3-D models can be 
calibrated to produce nearly identical M 2 responses, there are 
systematic differences in the overtides and slight differences 
in the secondary astronomical tides. Furthermore, the results 
indicate that the larger overtide amplitudes predicted by the 
3-D model are further away from the measured data than the 2- 
D model results. Therefore the over- and underprediction 
errors encountered in the Bight of Abaco for the 2-D model 
persist in the 3-D model, and in some cases these errors may 
be worse. 

Friction Analysis 

Since friction is the dominant nonlinearity in the Bight of 
Abaco, we seek further insight into the nonlinear tidal 

dynamics by analyzing the friction terms in the 2-D and 3-D 
models in detail. This is done using the harmonic approach 
of S79 and Walters [ 1986, 1987]. 

2-D Model Equations 

Velocity and elevation in the 2-D model equations can be 
expressed as a harmonic series 

1 N 

U(x,t)=Uo(x)+ • •Un(x ) exp(-iOOnt ) (12) n=-N 
n•O 

1 N 

•(x, t) = •o(X)+ -• Z •n(x) exp(-iO•nt) n--iV 
n•O 

(13) 

where N is the number of tidal constituents, •o n is the 



GRENIER ET AL.' NONLINEAR FRICTION IN TIDAL MODELS 13,729 

10 

8 

6 

4 

2 

0 
0 5 10 

2D O1 Amplitude 

lO 

5 

o 
o 5 lO 

2D N2 Amplitude 

10 

2 

5 10 

2D S2 Amplitude 

2.5 

1.5 

0.5 

0 
0 1 2 

2D M6 Amplitude 

lO 

5 

o 
o 5 lO 

2D K1 Amplitude 

50 

4O 

30 

20 

10 

2D M2 Amplitude 

50 

2.5 

2 

1.5 

0 
0 

2D M4 Amplitude 

Figure 5. Results for 3-D, eddy viscosity case 3 run versus 2-D run. Results are plotted at all nodes in the 
domain. 

angular frequency for the n th constituent, and •o_ n = -•o n. 
U o (x) and •'o (x) are the steady components and U n (x) 
and •'n (x) are complex harmonic amplitudes for the depth- 
averaged velocity vector and surface elevation, respectively. 

The uIuI term in the quadratic friction relation, (3), is 
evaluated by separating the absolute value of U into time- 
dependent and time-independent parts and expanding in a 
Taylor series about the time-independent part. Similarly, the 

I/H = l/(h + •') that appears in the bottom stress term in the 
2-D equations can be expanded in a Taylor series about the 
bathymetri½ depth. After applying a harmonic 
decomposition, the resulting expression for the n th 
constituent of the bottom stress term is 

(14) 

where Tb2 D is a linear stress term and the superscripts v and 
• denote terms nonlinear in velocity and elevation as 
discussed below (see S79 and Walters and Werner [1991] for 
details). 

The leading order contributor to the bottom stress term in 
(14) is linear in velocity and independent of surface elevation 

where 

- Cf2d-••U n (15) Tb2D = h 

;t-- 7n=•_•vU 'V* +U o 'U o (16) 
n•O 
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Table 5. 3-D Model Prediction Errors 

Measure O 1 K1 N 2 M2 S 2 M 4 M 6 

Amplitude error, % 6.4 8.7 
Phase error, deg 4.4 6.9 
Amplitude overpredicted 6 5 
Amplitude underpredicted 18 19 
Phase overpredicted 20 19 
Phase underpredicted 5 6 

Amplitude error, % 6.0 8.7 
Phase error, deg 4.5 6.6 
Amplitude overpredicted 5 5 
Amplitude underpredicted 19 19 
Phase overpredicted 20 21 
Phase underpredicted 5 4 

Amplitude error, % 5.1 8.2 
Phase error, deg 4.2 6.4 
Amplitude overpredicted 8 7 
Amplitude underpredicted 16 17 
Phase overpredicted 18 21 
Phase underpredicted 7 4 

Case I 

20.0 7.7 19.0 22.0 35.6 
12.9 5.4 15.8 25.5 27.9 
15 13 4 10 20 
9 11 20 12 4 
18 14 17 14 7 
7 11 8 11 18 

Case 2 

21.3 8.9 20.1 22.8 52.8 
12.8 5.8 16.0 25.7 26.2 
13 14 5 15 21 
11 10 19 9 3 
16 13 18 14 9 
9 12 7 11 16 

Case 3 

21.5 8.5 19.7 25.5 35.7 
12.8 5.7 16.0 26.2 25.9 
15 15 5 15 20 
9 9 19 8 4 
18 14 17 14 10 
7 11 8 11 15 

is the rms velocity and U* is the complex conjugate of U . 
In the Bight of Abaco, typical rms velocities in the sill regionn 
are approximately 25-30 cm/s. 

The first two nonlinear terms resulting from the quadratic 
friction relation are 

g.v - Cf2d Z (Up. Uq )[Jr (17) b2D -- 8 h/• p,q,r 
p•-q 

b2D C f2d • 
128h•, 3 p,q,r,s,t 

p•-q 
rS-s 

(18) 

while the leading nonlinear finite amplitude term is 

•.• C f2d/• b2D = h2 • •'pUq (19) P,q 

The indices p,q,r,s,t in (17)-(19) are any integers that satisfy 
top q' toq q' (-Or = (-On, top q' toq q' (-Or q' (-Os q' tot = (-On, and 
top + toq = ton, respectively. 

The first nonlinear quadratic friction term (17) is 
responsible for many of the overtides and compound tidal 
interactions in the Bight of Abaco. It is the primary generator 
of the M 6 overtide through the interaction of the dominant 
M 2 tide with itself, and it is also an important contributor to 
the damping of secondary astronomical constituents through 
the interactions of the M 2 tide with those constituents. The 
second nonlinear quadratic friction term, (18), adds 
destructively to contributions of the first nonlinear quadratic 

friction term at the same frequency; the reduction in the M 6 
overtide witnessed by W89 due to M 2-N 2 and M 2-S 2 
interactions is an example of this effect. The finite amplitude 
nonlinearity, (19), is responsible for a portion of the M 4 
overtide through the interaction of the M 2 amplitude and the 
M 2 current. The finite amplitude term in the continuity 
equation and the advective term in the momentum equation 

(to a much lesser extent in the Bight of Abaco) also 
contribute. The ratio of the first nonlinear quadratic friction 
term (17) to the linear friction term (15) (and therefore the rate 
of M 6 generation) scales with 1/8 g2. The ratio of the finite 
amplitude friction term (19) to the linear friction term (and 
therefore the rate of M 4 generation) scales with 1/h. 

The influence of the lowest-order nonlinear quadratic 
friction term (17) on each of the astronomical constituents 
can be estimated by considering its magnitude relative to the 
linear term (15). A plot of the ratio for the M 2 constituent at 
every node in the model domain for the optimal 2-D run is 
shown in Figure 6. The ratio is plotted versus the ellipticity 
of the M 2 tidal current, qb, ( qb = 1-B/A, where A and B are the 
lengths of the major and minor ellipse axes, respectively) 
computed from model results (see Figure 2). The dashed line 
represents the value of this ratio if only an M 2 tide were 
present. For the M2-only case the ratio has a minimum value 
of zero for circular current ellipses and a maximum value of 
1/4 for rectilinear ellipses. The ratios in the bight are 

consistently above this M2-only case, indicating that 
interactions involving secondary astronomical constituents 
increase the nonlinear term relative to their effect on the linear 

term through the rms velocity. Overall, the bight is 
characterized by near-rectilinear current ellipses ($ > 0.7) 
and ratio values between 0.3 and 0.35. A similar plot has been 
made for a typical secondary astronomical constituent (the 
Ol) in Figure 6. This ratio generally varies between 0.7 and 1 
and is typical of the values of the other secondary 
astronomical constituents. 

The significance of these results is that the nonlinear 
contribution of (17) to the total friction acting on the M 2 
constituent is only 30-35% of the linear contribution. 
However, for secondary constituents the nonlinear friction 
term (17) and the linear friction term are almost of equal 
importance. Thus the damping of the M 2 constituent is due 
primarily to the linear component of friction, while the 
damping of secondary constituents is influenced by the 
nonlinear and the linear terms in nearly equal proportion. 
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Figure 6. (left) Ratio of the first nonlinear quadratic friction term to the linear friction term for the M 2 

constituent versus • for the M 2 constituent. Note that •=1 for rectilinear currents and •=0 for circular 
currents. Dots indicate ratios computed using all astronomical tides (from the optimal 2-D run), dashed line 
indicates the limit for ratio computed using only the M 2. (right) The plot for the ratio of the first nonlinear 

quadratic friction term to the linear friction term for the O l constituent versus • for the M 2 constituent. 

3-D Model Equations 

The primary difference between the 2-D and 3-D models is 
that in the 3-D formulation, nonlinear frictional effects can 
occur at the bottom by a quadratic slip condition (if used) as 
well as in the water column through a time variation in E z. In 
sigma coordinates (setting cr = 0 at the surface and cr = -1 
at the bottom) the vertical shear stress in the water column has 
the form 

• 3 *z • 3 Ez (20) H Oty H 2 00' '• 

while the quadratic slip bottom boundary condition is given 
by 

1 *b_ 1 
m ,D O - • Cf3Dlublub (21) 

If we again expand the velocity and elevation about their time 
invariant parts, analytic expressions similar to (14) can be 
developed for (20) and (21) 

n ' z3 " 
(22) 

•' Z n --•'b3D+(•'b3D+"')+ •'b•3D+'" (23) 

where 

_ Cf3D'•'b 
'rb3D = T U bn (24a) 

,r v 
b3D 

Cf3D 
8hXb p,q,r 

p•-q 

Ubp ß Ubq )Ubr (24b) 

'r c -- C f3D•'b •f• •'pUbq (24c) b3D h 2 p,q 

In (22) and (23) the friction terms have again been separated 
into a linear component plus a nonlinear velocity and a 
nonlinear finite amplitude component. We note that (23) 
holds only for the quadratic slip bottom boundary condition 
(3-D cases 1 and 2). In these cases the slip condition results 

in a frictional effect that is identical to the 2-D case, except 
that the bottom slip velocity replaces the depth-averaged 
velocity in each expression. However, the frictional effect in 
the water column is different for each eddy viscosity 
formulation. 

Case 1: E: = AllUIH, quadratic slip bottom boundary 
condition. Using the case 1 eddy viscosity yields the 
following definition of terms in (22): 

Ai• 32Un 
•'z3D ---- (25a) 

h 0or 2 

•.v ---- A, • (Up . Uq ) 02ur (25b) z3D 8h/• p,q,r 01J 2 
p•-q 

'r c -- '41• p•,,q•'p 02Uq (25C) z3D h 2 30.2 

An examination of (24) and (25) indicates that the ratios of 
the nonlinear to linear terms in both the bottom slip and the 
water column shear stress terms scale as the ratios in the 2-D 

model (i.e., 1/8 •2 and l/h). Therefore, for this choice of eddy 
viscosity, the calibration of the 2-D and 3-D models to 
produce essentially identical M 2 responses ensures that the 
overall model results will be similar, including those for the 
M 4 and M 6 overtides. Moreover, (24) and (25) imply that 
for the IUIH eddy viscosity with a quadratic slip condition, 
the influence of the nonlinear friction terms on damping and 
overtide generation is the same regardless of whether the 
frictional dissipation occurs in the water column or at the 
bottom. 

Case 2: E r = A2IUI 2, quadratic slip bottom boundary 
condition. Using the case 2 eddy viscosity yields the 
following definition of terms in (22): 

•12 •2 02Un 
•'z3D -- (26a) 

h 2 00 .2 

-- 02Ur (26b) •.v _ '•2 Z (Up.Uq) 00 '2 z3D 4h 2 p,q,r 
p•-q 

-- 02Uq (26C) •'½ 2A2X2 Z •'p 
z3D h 3 P,q 00.2 
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While the bottom slip condition retains the same form as in 
the 2-D model, the presence of IU] 2 and the absence of a depth 
term in the eddy viscosity relation result in differences in the 
water column shear stress terms. In contrast with the 2-D 

model, the ratio of the nonlinear velocity term (26b) to the 
linear term (26a) scales with 1/4 3, 2 and the ratio of the finite 
amplitude term (26c) to the linear term scales with 2/h. 
Therefore, in the water column, the nonlinear effects of 
friction are twice as large (relative to the linear term) with a 
[U[ 2 dependent eddy viscosity as they are with the 2-D model. 
As a result, for the same M 2 currents both the production of 
M 4 and M 6 overrides and the damping of secondary waves 
should be greater when the eddy viscosity is parameterized in 
terms of [U] 2. Despite the fact that a majority of the friction is 
carried by the bottom slip term, this different nonlinear 
behavior is clearly observed in the Bight of Abaco runs 
(Figure 4). 

In some studies [e.g., Davies and Aidridge, 1993] the IUIH 
and IUI 2 dependent eddy viscosity formulations are used with 
a decreased eddy viscosity at the bottom and a larger slip 
coefficient. In effect, this shifts the bottom boundary 
condition closer to a no-slip condition and creates a more 
highly sheared velocity profile near the bed. However, the 
relationship between linear and nonlinear terms in the water 
column is unchanged. Assuming the depth-averaged M 2 
velocity is preserved, the results above suggest that such a 
change would produce similar M 4 and M 6 responses in the 
case of a IUIH dependent viscosity but higher M 4 and M 6 
responses in the case of a IUI 2 dependent viscosity (due to the 
increased velocity shear). 
Case 3' E z • n'u.z, no slip bottom boundary condition. 
The shear velocity u, can be expanded in a harmonic series in 
a manner similar to (12). Using the case 3 eddy viscosity 
yields the following definition of terms in (22): 
At 0. = -1, 

K'/•*Zø 032Un (27a) •'z3D -- h2 030.2 

•.v = lti2ø •_• (U,p ' U,q ) 032ur (27b) z3D 8h2•, p,q,r 030 '2 
p,e-q 

•½ 2 KJ,,Z o 032Uq z3D --= -- h • • •'•' (27c) Oa 2 

For-1 < 0. <-0.8, 

*z3 -- -Td + a+ a (28a) 

z3D 8/•,h 
03U r 

p.q.r 
p•-q 

+'•') •_• (U,p U,q 032ur i• J p, q , r ' ) 030 '2 
p•-q 

(28b) 

•.C --_ lCJ,, [p•,q•p 03Uq z3D h 2 030. 

2 z o 0.+ 
h 032Uq I (28c) 

For -0.8 < 0.< 0, 

O. 2 tcA, 032U n 
•'z3D ---- (29a) 

z3D 

032U r 
8h•, p,q,r 

p•-q 

(29b) 

z3D 

_ O. 2 •'•, 032u 
= - h• • •p q (29c) 

where 

U,n ß U,n + U,O ß U,O 

and the U.n are complex harmonic amplitudes for the shear 
velocity. 

In this case the relative behavior of the nonlinear terms 

varies with position in the water column. At the bottom the 
ratio of the nonlinear velocity term (27b) to the linear term 
scales with 1/8/•2 and the ratio of the nonlinear finite 

,, 

amplitude term (27c) to the linear term scales with 2/h. Thus, 
at the bottom, the generation of the M6 overtide will be 
similar to the 2-D model and the 3-D, case 1 model, while the 
generation of the M 4 overtide will be similar to the 3-D, case 
2 model and therefore will be enhanced over the 2-D model. 

In the upper 80% of the water column the two ratios scale with 
1/8/•2, and l/h, respectively, suggesting a behavior similar to 
that found in the 2-D model. In the lower 20% of the water 

column, two characteristic behaviors are observed. Very close 
to the bottom, the ratio zo/h exceeds 0.. Also, assuming a 
logarithmic velocity profile, 032Un/030.2 > 03Un/030.. Therefore 
close to the bottom, the ratios in (28) approach those at the 
bottom (27) and generation of the M 4 overtide will be 
enhanced over the 2-D model. Away from the bottom, the 
value of 0. rapidly becomes >> zo/h and the nonlinear 
velocity and finite amplitude ratios scale with 1/8 •2 and 1/h 
respectively, similar to the upper 80% of the water column. 
Model runs in the Bight of Abaco confirm that the M 4 
generation is enhanced over the 2-D model, while the M 6 is 
not (Figure 5). 

Modified Friction Computations 

The results presented in sections 3 and 4 of this paper have 
shown that spatially variable friction, uncertainty in the 
bathymetric distribution, 2-D versus 3-D model formulations, 
and different eddy viscosity formulations are all unable to 
account for the consistent overprediction of the M 6 overtide. 
A possibility which has not been examined is that M 6 
production in some areas could be reduced if element wetting 
and drying (not accounted for by the model) were allowed. 
However, if wetting and drying occurs at all, its influence 
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would be limited to the shallowest areas very close to shore 
and therefore would not likely change the M 6 significantly 
in other regions. Since the predicted M 6 amplitudes are too 
high throughout the entire domain, we believe that allowing 
for element wetting and drying would have little effect on the 
overall model behavior. 

Prior to pursuing the M 6 overprediction any further it is 
reasonable to consider the level of confidence we can have in 

these data and whether model overprediction is a result of 
bias in the observations. A review of the data reported by 
Filloux and Snyder [1979] suggests the observations are 
stable and well defined, and as shown in Table 1, observation 
errors are less than the prediction errors. Meteorological 
effects were taken into account in the original analysis by 
removing atmospheric pressures from the signals and by 
separating records into tidal and setup components. Data 
from stations occupied more than once are consistent despite 
differences in meteorological conditions during the three 
observation periods. Moreover, bias in model results exists 
only for the M 6 and not for the M 4. It seems likely that if 
M 6 observations were consistently low, M 4 observations 
(which are of the same order) would be low as well. Thus, bias 
in the measurements is probably not responsible for model 
overpredictions. 

One remaining option is to modify the standard quadratic 
friction and eddy viscosity formulations. It has been 
demonstrated that nonlinear frictional interactions involving 
the M 2 constituent are responsible for the generation of the 
M 6 overtide and contribute to the damping of secondary 

astronomical constituents in both the 2-D and 3-D models. 

The principal difficulty in the Bight of Abaco is that while the 
M 2 is well represented in both models, the nonlinear 
interactions overgenerate the M 6 tide and may also overdamp 
the Oi, K l, and S 2 tides. While the nonlinear frictional 
effects on the damping of the M 2 tide cannot be ignored, the 
response of the M 2 is mostly due to the linear effects of 
friction. Therefore, if we decrease the nonlinear contribution 
relative to the linear contribution, we should be able to 
achieve proper damping of the M 2 and, at the same time, 
reduce the production of the M 6 overtide and the damping of 
the secondary astronomical constituents. 

We investigate the impact of this idea in a final series of 
model runs using both the 2-D model and the 3-D, case 3 

model. In both models we reduced the nonlinear part of the 
friction term by a fixed percentage while maintaining the 
linear part at approximately the same level. For the 2-D model 
this was accomplished by adding a linear contribution to the 
friction term, the magnitude of which was computed from the 
rms depth-averaged velocity. Thus the friction term in the 2- 
D model becomes 

+ (30) 13 ø = C f2 d 
where Cf2 d = 0. 0085 (the previous optimum value), ,/t is the 
nonlinear reduction factor (e.g., for a 30% nonlinear 
reduction, ,/t=0.3), and • is the rms depth-averaged velocity 
computed from the original model run. For the 3-D model the 
reduction is applied to the eddy viscosity. For example, at 
the bottom the eddy viscosity becomes 

E z = [(1-,/t)u, +,/tt,]• o (31) 
where •, is the rms shear velocity introduced following (29). 
The value •, at each node was computed using a time series 
of the bottom stress from the original 3-D, case 3 run. 

Typical results from this final set of runs are shown in 
Table 6. We considered a number of reduction percentages 
and found that a 30% reduction for the 2-D model and a 20% 
reduction for the 3-D model provided the best overall results. 

For the 2-D model the amplitude error for the M 6 is 
reduced from 35.5 to 21.1%. In addition, the error 
distribution shows that the M 6 amplitudes are no longer 
consistently overpredicted. Improvements in the overall error 
in the secondary astronomical constituents are less dramatic 
due to the reduced influence of the nonlinear terms on these 

constituents. Nevertheless, the error bias toward being 
overdamped has been largely eliminated for Ol and Kl and 
substantially reduced for S 2. Some improvement in the 
magnitude and distribution of the phase prediction errors is 
apparent as well. Overall, the results for the M2, N2, and M 4 
are similar to the original model computations. 

For the 3-D model the M 6 amplitude error has been 
reduced by approximately one half and the bias in the error 
distribution has been nearly eliminated. The M 4 amplitude 
error has been reduced, and the distribution slightly 

Table 6. Results for the 2-D and 3-D Models With Modified Friction Terms 

Measure 01 K 1 

Amplitude error, % 4.9 8.0 
Phase error, deg 3.9 6.3 
Amplitude overpredicted 11 10 
Amplitude underpredicted 12 14 
Phase overpredicted 17 17 
Phase underpredicted 8 8 

Amplitude error, % 5.3 8.5 
Phase error, deg 4.2 6.0 
Amplitude overpredicted 17 15 
Amplitude underpredicted 6 9 
Phase overpredicted 14 18 
Phase underpredicted 11 7 

N2 M2 S 2 M4 M6 

2-D Model Run* 

21.7 7.9 18.2 20.6 21.1 
12.8 5.6 15.8 24.4 25.8 
15 15 9 11 11 
9 9 15 12 13 
16 13 18 15 7 
9 12 7 10 18 

3-D Model Runt 

23.0 8.5 19.2 22.5 19.3 
12.8 5.9 16.1 25.0 22.7 
15 15 7 13 10 
9 9 16 9 13 
18 14 18 14 11 
7 11 7 11 14 

* Model was run with a 30% nonlinear reduction. 

t Model was run with a 20% nonlinear reduction. 
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improved as well, although the change is small in comparison 
with the variability in the M 4 observations. The overall 
amplitude errors for the O l, Kl, and N 2 constituents are 
slightly higher in the present case, although the O 1 and K 1 
have gone from being overdamped in the original 3-D run to 
being underdamped in this run. 

One physical explanation for modifying the friction 
formulation is that the modifications account for the presence 
of a steady background current or residual turbulence field 
which contributes to the frictional processes. For example, 
the modified formulation for the 2-D model (30) may be 
rewritten 

where U o is defined as ,/•,/(1-,/•). Assuming • = 0.3 and 
•, = 25 cm/s near the sill region, this corresponds to a steady 
background current of approximately 10 cm/s. Similarly, in 
the 3-D model, ,/• = 0.2 and •,, = 2.5 cm/s corresponds to a 
background current of approximately 7 cm/s. 

The assumption of steady background currents has been 
made in other modeling studies. In fact, S79 used an assumed 
steady current to reduce the M 6 response, although the 
required steady background velocity was considerably higher 
(28 cm/s). However, their runs did not include the full 
complement of compound tidal interactions which are quite 
important in the Bight of Abaco. In addition, the effects on 
secondary astronomical constituents were not considered. 
The contribution of an assumed steady background current 
was included also by Nairnie et al. [1994] in their model of 
circulation on Georges Bank. In their model the steady 
current was 7 cm/s. 

A generic modification to the eddy viscosity in a 3-D 
model has also been proposed by R.A. Walters (manuscript in 
review, 1995) in order to improve the prediction of 
overdamped secondary astronomical constituents in the 
Delaware River. More accurate predictions of the N 2 
constituent were achieved by reducing the nonlinear 
contribution of the viscosity by 40%. 

Conclusions 

In this paper we compare 2-D and 3-D models for 
computing the tidal response at five astronomical and two 
overtide frequencies in a shallow, friction-dominated 
embayment. The results indicate that although the 2-D and 3- 
D models may be calibrated to produce very similar responses 
for the dominant, astronomical (M2) tide, systematic 
differences eXis• in the computed responses of the overtides 
depending on the eddy viscosity formulation that is used. 

Analytical expansions were developed to show that the 
differences in the 2-D and 3-D models are related to the 

relative influence of nonlinear velocity and finite amplitude 
components of the friction terms. For a 3-D model with a 
quadratic slip condition and a [U[H dependent eddy viscosity, 
the nonlinear terms behave almost identically with those in 
the 2-D model. Thus the computed amplitudes for all 
constituents are essentially identical in both models when 
they are calibrated to have similar M2 responses. In the case 
of a quadratic slip condition and a U • dependent viscosity the 
3-D model produces consistently higher M 4 and M 6 
amplitudes than the 2-D model due to the greater influence of 

the nonlinear terms associated with friction in the water 

column. When a no-slip condition and a •cu,z eddy viscosity 
are used, the M 4 amplitudes are consistently higher in the 3- 
D model than in the 2-D model. For all the models the 

importance of the nonlinear terms is dependent on the 
911ipticity of the• tidal currents; the strongest effects are found 
in rectilinear flow. 

The results of this investigation indicate that the problems 
of overproduction of M 2 overtides (in particular the M6) and 
overdamping of secondary astronomical tides often 
encountered in 2-D models will occur in 3-D models as well. 

These problems are shown to have a common origin, i.e., 
nonlinear frictional contributions that are too large relative to 
the linear frictional contribution. Although a number of 
causes were considered, it was 'possible to improve the 
overgeneration of the M 6 overtide and the overdamping of 
the secondary astronomical tides only by modifying the 
friction term to include an additional linear contribution. 

This additional contribution could represent a steady current, 
residual turbulence, or some 6ther frictional process that is 
not properly accounted for by the standard analytical friction 
formulations considered in this study. If a steady current is 
assumed, a value of 7-10 cm/s is required to meet the 
additional linear friction requirement. 

If the analytical friction formulations are considered 
inadequate, a logical next step might be to use a higher-order 
turbulence closure. In particular, the transient storage of 
turbulence in the water column may allow for the 
development of a residual turbulence field. However, in the 
shallow waters of the Bight of Abaco, turbulence production 
and dissipation will likely be in close balance throughout the 
water column, leaving little left over for a residual field to 
develop. Thus a higher-order turbulence closur• is unlikely 
to overcome the difficulties encountered in the Bight of 
Abaco. 

An interesting consequence of our analyses is an 
appreciation of the degree to which model formulations may 
be constrained by comparisons with elevation data for 
overtides and other nonlinear tides. Model runs in the bight 
showed that the overtides were much more sensitive than the 

astronomical tides to the choice of friction coefficient, 2-D 
versus 3-D formulation, eddy viscosity, and bathymetric 
depth. 
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