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Abstract

In this paper, we discuss the development, verification, and application of an hp discontinuous Galerkin (DG) finite element model for
solving the shallow water equations (SWE) on unstructured triangular grids. The h and p convergence properties of the method are dem-
onstrated for both linear and highly nonlinear problems with advection dominance. Standard h-refinement for a fixed p leads to p + 1
convergence rates, while exponential convergence is observed for p-refinement for a fixed h. It is also demonstrated that the use of p-
refinement is more efficient for problems exhibiting smooth solutions. Additionally, the ability of p-refinement to adequately resolve com-
plex, two-dimensional flow structures is demonstrated in the context of a coastal inlet problem.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The shallow water equations (SWE) are extensively
applied to model flows in coastal oceans, inlets, rivers
and adjacent floodplains. These equations include two
numerically troublesome processes that have led to inten-
sive algorithmic development over the past four decades.
The SWE are, in their simplest form, long wave propaga-
tion equations and numerical solutions are often plagued
by energetic artificial spurious modes that appear even in
solutions of the fully linear SWE and are independent of
the level of wave form resolution [1–3]. In addition, the
nonlinear advective acceleration terms can lead to the gen-
eration of spurious modes associated with phase errors for
poorly resolved scales. The numerical difficulties associated
with the wave propagation and advection processes have
traditionally been solved using distinct algorithms. For
continuous Galerkin (CG) finite element solutions, success-
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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ful techniques to the spurious mode problem associated
with wave propagation include reformulating the govern-
ing equations [4,5] or using grid enriched velocity solutions
[6]. The nonlinear advective terms have been approached
with algorithms such as the streamline upwind Petrov–
Galerkin (SUPG) method [7] or fractional step methods
which implement Lagrangian tracking to solve for the
advection process [8]. Although these techniques have
made progress towards solving the fully nonlinear form
of the SWE, robustness, accuracy and artificial damping
problems remain.

Recently discontinuous Galerkin (DG) methods applied
to the SWE have emerged and provide a unified approach
to solving the numerical difficulties associated with both
the wave propagation and advection processes. The main
advantages of DG methods for shallow water flows are:
their ability to capture smooth physically damped solutions
to the wave propagation problem; their ability to handle
advection dominated flows including problems with
hydraulic jumps or bores (discontinuities); their inherent
elemental mass and momentum conservation properties,
which make them ideal for coupling flow and transport
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models; and the ease with which both h (grid) and p

(polynomial order) refinement, and also adaptivity can be
implemented. In this paper, we discuss the development,
verification, and application of an hp DG finite element
model for solving the SWE on unstructured triangular
grids. In particular, we focus on applications involving
advection dominated SWE using high-order p solutions.

Although DG methods first appeared in the 1970s
(see for example [9]), application of these methods to the
SWE has only appeared in the literature in the past 5 years,
and most of these studies have focused primarily on the
application of the method to specialized problems involv-
ing dam break flows and hydraulic jumps and/or have
employed essentially low-order p approximations [10–14].
It is only very recently that hp (or spectral) DG methods
employing high-order p approximations have been prelim-
inarily investigated for the SWE [15–17]. In [15,17] high-
order global DG SWE models, which solve the equations
on the sphere using curvilinear quadrilateral elements, were
developed and applied to a number of tests cases for prob-
lems of a global scale (e.g. global, steady-state, geostrophic
flow). Both approaches used the local Lax–Friedrich (LLF)
flux as the Riemann solver. In [16], a high-order DG SWE
model using triangular elements was developed that solves
the so-called divergence form of the equations and makes
use of the HLLC Riemann solver. The hp convergence
properties of the model were demonstrated for a simple
linear problem.

The present study differs from these previous studies in
terms of the details of the implementation, the problems
examined, and the assessment of the method in terms of
hp convergence properties. With regard to the details of
the implementation, the DG method presented solves the
so-called Green’s form of the equations making use of
approximating polynomials of arbitrary order over trian-
gular elements that are linked through a numerical flux
approximated using Roe’s method. In order to maintain
computational efficiency for high-order implementations
of the method, an orthogonal and hierarchical triangular
basis is used along with efficient symmetrical Gaussian
quadrature rules that are optimal (or near optimal) for
the triangle. This results in a matrix-free algorithm that
uses a minimum number of quadrature points.

In terms of the problems that are examined and the
assessment of the method, previous convergence studies
have typically been limited to simplified steady-state or lin-
ear problems without the presence of source/sink terms,
spatially varying bathymetry, or time-varying boundary
conditions – factors that are essential to include for an
assessment of the method’s potential to model realistic flow
scenarios in coastal engineering problems. In this paper, we
examine a linear channel problem, a fully nonlinear chan-
nel problem with spatially varying bathymetry, and a fully
nonlinear inlet problem with an ebb shoal. The latter prob-
lems are strongly advection dominated, with the inlet prob-
lem involving the formation, development and advection of
energetic eddies. The hp convergence properties of the DG
method are rigorously assessed for these linear and nonlin-
ear problems. Through systematic h and p refinement, the
dual paths to convergence of the method are demonstrated.
Although no theoretical convergence rates are known for
DG methods that incorporate complex numerical fluxes
(such as the HLLC or Roe flux) applied to the fully nonlin-
ear SWE without eddy viscosity, previous numerical results
using hp DG methods have shown h-convergence rates of
p+1 and exponential p-convergence rates for linear prob-
lems (see for example [16,18]; also see [19] for a theoretical
result that considers a viscous form of the SWE and uses
upwind fluxes). In this paper, for both linear and nonlinear
problems, we demonstrate that standard h refinement for a
fixed p leads to convergence rates of approximately p + 1,
while exponential convergence is observed for p refinement
on a fixed mesh. It is also demonstrated that the use of p

refinement is more efficient for problems exhibiting smooth
solutions. Additionally, the ability of p-refinement to ade-
quately resolve complex two-dimensional flow structures
is investigated in the context of a coastal inlet problem.

This paper is organized as follows. In the next section,
the SWE equations are presented. We then proceed with
a detailed description of our implementation of the DG
method for the two-dimensional SWE’s, including specific
details on the numerical flux, basis, and quadrature rules
that are employed. In Section 4, numerical results are pre-
sented and the performance of the method is evaluated in a
series of test cases ranging in complexity from smooth lin-
ear problems to highly nonlinear, advection dominated
flow scenarios. Section 5 summarizes this work and dis-
cusses future developments in this area using DG methods.

2. Governing equations

The two-dimensional SWE consist of the depth-aver-
aged continuity equation and the x and y momentum equa-
tions written here in conservative form

of
ot
þ o

ox
ðHuÞ þ o

oy
ðHvÞ ¼ 0; ð1Þ

o

ot
ðuHÞ þ o

ox
Hu2 þ 1

2
gðH 2 � h2Þ

� �
þ o

oy
ðHuvÞ

¼ gf
oh
ox
� suH þ F x; ð2Þ

o

ot
ðvHÞ þ o

ox
ðHuvÞ þ o

oy
Hv2 þ 1

2
gðH 2 � h2Þ

� �

¼ gf
oh
oy
� svH þ F y ; ð3Þ

where f is the elevation of the free surface measured from
the geoid (positive upwards), h is the bathymetric depth
measured from the geoid (positive downwards),
H = f + h is the total height of the water column, g is the
gravitational constant, u and v are the depth-averaged
velocities in the x and y directions respectively, s is the bot-
tom friction factor, and Fx and Fy are meant to represent
any additional terms which may be present due to Coriolis
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force, tidal potential forces, surface stresses such as wind or
wave radiation stresses, etc. The specific functional form of
these additional terms is not important in the details of the
algorithm to be outlined. Eqs. (1)–(3) are supplemented
with suitable initial and boundary conditions.

Note that the equations have been written in so-called
divergence form. That is, each equation takes the form

owi

ot
þr � FiðwÞ ¼ siðwÞ; ð4Þ

where i = 1, 2, or 3 and wi is the ith component of the
vector w of conserved variables

w ¼ ½ f; uH ; vH �T; ð5Þ

Fi is the ith row of the flux function matrix whose columns
are the flux function vectors in the x and y directions
denoted by fx and fy respectively:

F ¼ ½ fx; fy � ¼

uH vH

Hu2 þ 1

2
gðH 2 � h2Þ Huv

Huv Hv2 þ 1

2
gðH 2 � h2Þ

2
6664

3
7775
ð6Þ

and finally si is the ith component of the vector s of source/
sink terms which is given by

s ¼ 0; gf
oh
ox
þ F x � suH ; gf

oh
oy
þ F y � svH

� �T

: ð7Þ

With these definitions, the equations can be written in the
concise form

ow

ot
þ ofx

ox
þ ofy

oy
¼ s: ð8Þ
3. Discontinuous Galerkin method

We first introduce notation that will be used. Given a
domain X � R2, which has been triangulated into a set of
non-overlapping, but not necessarily conforming, elements,
let Xe define the domain of an element e and denote the
boundary of the element by oXe. An inner product taken
over Xe will be denoted by ð�; �ÞXe

, and an inner product
taken over oXe will be denoted by h�; �ioXe

. The outward
unit normal vector of oXe will be denoted by n, and the
fixed unit normal vector for a given edge i of oXe will be
denoted by ni.

We approximate w by wh, the components of which
belong to the space of piecewise smooth functions that
are differentiable over an element, but which allow discon-
tinuities between elements. We denote this space of func-
tions by Vh. The value of a function v 2 Vh along oXe is
denoted by v(in) when approaching oXe from the interior
of an element e and by v(ex) when approaching oXe from
the exterior of an element.

The SWE are put into a discrete weak form by replacing
w by wh, multiplying each equation by a test function
v 2 Vh, integrating over each element, and integrating the
divergence term by parts

o

ot
ðwhÞi; v

� �
Xe

� ðrv;FiÞXe
þ hFi � n; vioXe

¼ ðs; vÞXE

i ¼ 1; 2; 3; ð9Þ

where (wh)i is the ith component of wh. Due to the fact that
discontinuities are permitted along oXe, the flux F, which
may be dual-valued along oXe, is replaced in the boundary
integral by a single-valued numerical flux denoted by bF.
Making this substitution the discrete weak formulation of
the problem is now given by

o

ot
ðwhÞi; v

� �
Xe

� ðrv;FiÞXe
þ hF̂i � n; vioXe

¼ ðs; vÞXE
;

i ¼ 1; 2; 3; ð10Þ

where bFi is the ith row of bF.
To complete the spatial discretization, we must now

define the procedure used to calculate the numerical flux,
the choice of basis functions, and the method used to eval-
uate the integrals of Eq. (10). This is done in the following
sub-sections.

3.1. The numerical flux – solving the Riemann problem

To define the numerical flux, it is useful to begin by com-
puting the Jacobian matrices of the x and y flux function
vectors

Jx ¼
ofx

ow
¼

0 1 0

gH � u2 2u 0

�uv v u

2
64

3
75;

Jy ¼
ofy

ow
¼

0 0 1

�uv v u

gH � v2 0 2v

2
64

3
75

ð11Þ

and a ‘‘normal Jacobian matrix’’ defined by

Jn ¼ Jxnx þ Jyny ; ð12Þ
where nx and ny are the x and y components, respectively,
of the unit normal vector, n. This matrix has the following
eigenvalues:

k1 ¼ unx þ vny �
ffiffiffiffiffiffiffi
gH

p
; k2 ¼ unx þ vny ;

k3 ¼ unx þ vny þ
ffiffiffiffiffiffiffi
gH

p ð13Þ

and the corresponding eigenvectors

r1 ¼
1

u�
ffiffiffiffiffiffiffi
gH
p

nx

v�
ffiffiffiffiffiffiffi
gH
p

ny

2
64

3
75; r2 ¼

0

�ny

nx

2
64

3
75; r3 ¼

1

uþ
ffiffiffiffiffiffiffi
gH
p

nx

vþ
ffiffiffiffiffiffiffi
gH
p

ny

2
64

3
75:
ð14Þ

Using these eigenvalues and eigenvectors we define the
following matrices:
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jkj ¼
jk1j 0 0

0 jk2j 0

0 0 jk3j

2
64

3
75; R ¼ r1; r2; r3½ �: ð15Þ

A thorough discussion of the Riemann problem and its
solution, both in a theoretical and numerical framework,
is presented by [20]. There are a number of different
approaches that can be used. In our formulation, we use
Roe’s method [21] to solve the Riemann problem, which
is known to provide sharp resolution of the solution at dis-
continuities [22]. We have tested Roe’s flux for a variety of
problems, and it has proven to be robust. Other flux
approximations will be tested in future work.

Using the definitions above, Roe’s numerical flux can be
written in the form

bF ¼ 1

2
Fn w

ðinÞ
h

� �
þ Fn w

ðexÞ
h

� �h i
� 1

2
bRjk̂jbR�1 w

ðinÞ
h � w

ðexÞ
h

� �
;

ð16Þ
where Fn is a vector whose ith component is defined by

ðFnÞi ¼ Fi � n; ð17Þ
and where bR and jk̂j are made up of the eigenvectors and
eigenvalues, respectively, of the linearized normal Jacobian
matrix which is Eq. (12) evaluated at the so-called ‘‘Roe
averages’’:

f̂ ¼ 1

2
fðinÞ þ fðexÞ
� �

;

û ¼ uðinÞ
ffiffiffiffiffiffiffiffiffiffi
H ðinÞ
p

þ uðexÞ
ffiffiffiffiffiffiffiffiffiffi
H ðexÞ
p

ffiffiffiffiffiffiffiffiffiffi
H ðinÞ
p

þ
ffiffiffiffiffiffiffiffiffiffi
H ðexÞ
p ;

v̂ ¼ vðinÞ
ffiffiffiffiffiffiffiffiffiffi
H ðinÞ
p

þ vðexÞ
ffiffiffiffiffiffiffiffiffiffi
H ðexÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H ðinÞ þ

ffiffiffiffiffiffiffiffiffiffi
H ðexÞ
pp :

ð18Þ
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Fig. 1. Transformation of the master triangular element into a quadri-
lateral element.
3.2. The basis

A judicious choice of basis can simplify the implementa-
tion of the method and improve the computational effi-
ciency. Here, we employ an orthogonal triangular basis
due to Dubiner [23], which has been extensively used in
the DG literature. This basis results in a diagonal mass
matrix, which is trivially inverted. The basis is also hierar-
chical implying that higher-order elements are obtained by
simply adding terms to the lower-order elements, i.e. a qua-
dratic element is obtained by adding additional ‘‘modes’’ to
the linear element. This property is especially advantageous
in implementing p-adaptivity. Unlike standard Lagrangian
bases, which are typically used in continuous Galerkin
finite element methods, the degrees of freedom in this basis
correspond to different ‘‘modal’’ coefficients of the solution
rather than specific nodal values.

The basis is constructed as a (generalized) tensor prod-
uct of polynomials

/ijðn1; n2Þ ¼ P 0;0
i ðg1Þ

1� g2

2

� �i

P 2iþ1;0
j ðg2Þ; ð19Þ
where P a;b
N is the Nth order Jacobi polynomial of weights

a and b, ni are the coordinates of the master triangular
element, and gi are the coordinates given by the
transformation:

g1 ¼
2ð1þ n1Þ
ð1� n2Þ

� 1; g2 ¼ n2: ð20Þ

This transformation effectively maps the triangular master
element into a quadrilateral one as shown in Fig. 1. It is
noted that there is a singularity in the transformation given
by Eq. (20) at n2 = 1. However, as noted in [18], even
though the transformation is singular, the basis functions,
/ij are not singular functions in terms of the n-coordinates.
They are in fact polynomials. The 1�g2

2
term appearing in /ij

ensures this. For example, the basis function for i = 1, j = 0
expressed in the n-coordinates is

ð21Þ

Thus, the basis functions /ij are polynomials both in terms
of n- and g-coordinate systems.

With this basis the approximate solution is now defined
as

wh ¼
X

i

X
j

~wij/ij; ð22Þ

where ~wij are the modal degrees of freedom. Due to the
hierarchical nature of basis, a linear element is obtained
by using the first three functions, a quadratic element by
using the first six, and so on.

3.3. Quadrature rules

The integrals appearing in Eq. (10) are typically evalu-
ated using quadrature rules, although a quadrature free
DG method has been implemented as well [24]. Note that
both an area integral and a boundary integral, which
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resulted from the integration by parts, need to be evalu-
ated. For a DG spatial approximation of degree p, the area
and boundary integrals should be integrated with 2p and
2p + 1 Gaussian quadrature rules, respectively [25]. The
boundary integrals can be evaluated using standard one-
dimensional Gaussian quadrature rules. Typically for hp
or spectral versions of the DG method using triangular ele-
ments, the area integrals are evaluated using a product of
one-dimensional Gaussian quadrature rules over the mas-
ter quadrilateral element (see for example [16,26]). In our
implementation, instead of using this procedure, we have
employed efficient high-degree symmetric Gaussian quad-
rature rules specifically for the triangle as defined in [27],
which gives quadrature rules for the triangle up to degree
20. Use of these quadrature rules results in a lower number
of Gauss points when compared to using a product of one-
dimensional Gaussian quadrature rules over a quadrilat-
eral. For example, for a p = 4 spatial approximation 25
quadrature points are required for the area integral when
using a product rule while only 16 points are required when
using the quadrature rule for the triangle.

3.4. The Runge–Kutta time discretization

The DG spatial discretization reduces the problem to a
system of ODE’s. After inverting the mass matrix (which is
diagonal and therefore trivially inverted), we can write the
systems of ODE’s in the following concise form:

d

dt
ðwhÞ ¼ LhðwhÞ: ð23Þ

We discretize this system of ODE’s using explicit total var-
iation diminishing (TVD) Runge–Kutta schemes, which
were first introduced by Shu and Osher, [28,29]. We note
that these schemes preserve the TVD property of the DG
45 km

90 km

3 m depth

a

b

Fig. 2. Domain of problems P1.1 and P1.2: (a) plan view p
spatial discretization and the forward Euler method with
the application of a slope limiter [30]. For a linear or
p = 1 spatial approximation we use a second-order scheme
which is given by

w
ð1Þ
h ¼ w

ðtÞ
h þ DtLh w

ðtÞ
h

� �
;

w
ðtþ1Þ
h ¼ 1

2
w
ðtÞ
h þ w

ð1Þ
h þ DtLh w

ð1Þ
h

� �� �
:

ð24Þ

For spatial approximations of order p > 1 we use a third-
order scheme

w
ð1Þ
h ¼ w

ðtÞ
h þ DtLh w

ðtÞ
h

� �
;

w
ð2Þ
h ¼

3

4
w
ðtÞ
h þ

1

4
w
ð1Þ
h þ DtLh w

ð1Þ
h

� �� �
;

w
ðtþ1Þ
h ¼ 3

4
w
ðtÞ
h þ

2

3
w
ð2Þ
h þ DtLh w

ð2Þ
h

� �� �
:

ð25Þ

Due to the fact that these schemes are explicit, the size of
the timestep is limited by a CFL condition. In practice,
we take

Dt 6 min
Xe

he

ðkmaxÞeð2p þ 1Þ

� �
; ð26Þ

where he is the diameter of the element and kmax is an estimate
of the maximum (in absolute value) of the eigenvalues given by
Eq. (13) for an element e. The factor of 1/(2p + 1) is an
estimate of the CFL number required for stability (see [30]).

3.5. The slope limiter

When the solution displays sharp fronts or shocks the
application of a slope limiter at each intermediate time step
of the schemes described above can be used in order to con-
trol local oscillations. This procedure may reduce the order
Open Ocean

Boundary

= Land Boundary 

roblems P1.1 and P1.2; (b) cross section problem P1.1.
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of the approximation in the neighborhood of the sharp
front if an oscillation is detected. For the problems consid-
ered in this paper, we have found it unnecessary in practice
to apply any kind of limiting.

3.6. Boundary conditions

Boundary conditions are enforced weakly through the
numerical flux by specifying appropriate exterior values
for the variables along boundary edges.

No-normal flow or land boundaries are enforced by
specifying the following exterior conditions:
QðexÞ
n ¼ �QðinÞn ; QðexÞ

t ¼ QðinÞt ; fðexÞ ¼ fðinÞ; ð27Þ
where Qn are Qt are the flow rates in the normal and
tangential directions of the given edge, respectively.

At open water boundaries prescribed surface elevations,
fb.c., or flow rates, Qb.c. are specified as exterior values of
the corresponding variable. The remaining variables are
simply set equal to their corresponding interior values.
That is, for an elevation specified open boundary condition
we specify:

fðexÞ ¼ fb:c:; QðexÞ ¼ QðinÞ: ð28Þ

and for a flow specified open boundary condition we
specify:
QðexÞ ¼ Qb:c:; fðexÞ ¼ fðinÞ: ð29Þ
Fig. 3. h Refinements for problems P1.1 and P1.2.
In some cases for higher-order approximations (p P 3), the
elevation specified boundary condition has led to instabili-
ties occurring at or near corners or when the flow is nearly
parallel to the boundary as is the case when interior gener-
ated eddies propagate to the open boundary. It was found
that this problem can be avoided by specifying a zero exte-
rior tangential flow along the given edge or by specifying
an equivalent flow specified boundary condition. The
proper specification of open ocean boundary conditions
in the framework of the DG method is currently being
investigated.

In the case of a radiation boundary condition, we simply
set the exterior values of all the variables to their corre-
sponding interior values.

4. Numerical examples

The DG method outlined above has been applied to a
number of problems varying from linear to highly nonlin-
ear. In this section, the results of three sets of test cases,
which are described in the following sub-sections, are pre-
sented. In cases where the error is evaluated, it is computed
at the barycenter of each element in the domain by compar-
ing the numerical solution to either an analytical or highly
refined numerical solution. We then define the maximum or
L1 error as the maximum (in absolute value) of the errors
over all of the elements.

4.1. Problems P1.1 and P1.2: Rectangular harbor with linear

SWE

In the first problem, we look at a linear wave propa-
gation problem by solving the linear SWE, which are
obtained from Eqs. (1)–(3) by neglecting the advective
terms, assuming the height of the free surface is small com-
pared to the total depth, and using a linear bottom friction.
Thus the linear SWE equations take the form
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Fig. 4. h Convergence for problem P1.1 in surface elevation and velocity.
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of
ot
þ o

ox
ðhuÞ þ o

oy
ðhvÞ ¼ 0; ð30Þ

ou
ot
þ g

of
ox
¼ �su; ð31Þ

ov
ot
þ g

of
oy
¼ �sv: ð32Þ
Table 1
Computed orders of convergence for problem P1.1

h p

1 2 3 4

Order of convergence – surface elevation

h1 – – – –
h2 1.9261 3.1312 3.8957 5.1158
h3 1.9869 3.0562 3.9527 5.0569
h4 1.9432 3.0314 3.9779 4.8490

Order of convergence – velocity

h1 – – – –
h2 1.7802 3.1566 4.0082 4.4423
h3 1.8605 2.9898 4.0104 5.0569
h4 1.9265 3.0107 4.0038 5.4054
For these equations Lynch and Gray [31] derive analytical
solutions to a number of geometrically idealized estuary
problems that are meant to serve as verification tools for
shallow water models. In an effort to make these problems
rigorous test cases, they incorporate tidal forcing, bottom
friction, wind stress, spatially varying bathymetries, and
both Cartesian and polar geometries. By linearizing the
shallow water equations and restricting themselves to peri-
odic forcing functions, they obtain a number of dynamic
steady-state solutions.

Here, we present solutions to the flat bathymetry Carte-
sian geometry case (see Table 2 of [31]) both with and with-
out linear bottom friction, i.e. s = constant. Although not
presented here, the method has also been applied to the
cases of linear and quadratic varying bathymetry as well.
The domains of the problem are defined as rectangular har-
bors with land boundaries on the north, south, and west
(specified by no normal flow) and an open ocean boundary
on the east (specified by an elevation). The harbors, shown
in Fig. 2, are defined as 45,000 m wide in the north–south
direction and 90,000 m long in the east–west direction.
The problems are forced with a 0.30 m amplitude M2 tidal
signal. We examine the flat bathymetry case both without
bottom friction (denoted P1.1) and with linear bottom fric-
tion, s = 0.0001 s�1 (denoted P1.2). In both cases, the lin-
ear SWE equations are solved, and the initial conditions
are defined according to the exact solution at time t = 0.
A time step of 1 s is used for all the simulations, which is
well below the estimate provided by Eq. (26). This was
done to insure that the spatial errors were the dominant
part of the overall error since we are primarily interested
in the rate of convergence of the DG spatial discretization.
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Fig. 5. p Convergence for problem P1.1 in surface elevation and velocity.
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The error is computed at t = 2 days by comparing the
numerical solutions to the analytical solutions.

First, we examine the h convergence properties of the
method by fixing p and varying h by systematically refining
the grid as shown in Fig. 3. Errors are plotted as a function
of h on a log–log scale for a range of p values in Fig. 4 for
problem P1.1. The numerical rates of convergence are tab-
ulated in Table 1 where it can be observed that optimal
convergence rates of approximately p + 1 are observed in
both the surface elevation and the velocity. We note that
the slight degradation of the convergence rate in the surface
elevation computed from h3 to h4 for p = 4 is due to the
fact that the errors are on the order of machine precision.

Next, the p convergence properties of the method are
investigated by fixing h and varying p. In Fig. 5, the error
is plotted as a function of p on a linear-log scale for the first
level of grid refinement where it can be noted that the
expected exponential rate of convergence is obtained
(observed as a straight line on the linear-log plot) in both
the surface elevation and velocity solutions.
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The results of the h and p convergence studies can be
combined on a single plot by plotting the error as a func-
tion of the total number of degrees of freedom. This is
done in Fig. 6 where the solid lines indicate h refinement
for a fixed p and the dashed lines indicate p refinement
for a fixed h. For a given number of degrees of freedom
the higher-order elements have lower error levels. Given
Fig. 8. Domain of problem P2: (a) plan view problem P2; (b) cross section of problem P2.

Table 3
Computed orders of convergence for problem P3

h p

1 2 3

Order of convergence – surface elevation

h1 – – –
h2 1.9318 3.2087 4.0215
h3 1.9749 2.9825 3.9813

Order of convergence – velocity

h1 – – –
h2 1.9236 3.2543 3.4405
h3 1.9806 2.8696 3.9523

Table 2
Computed orders of convergence for problem P1.2

h p

1 2 3 4

Order of convergence – surface elevation

h1 – – – –
h2 2.1279 3.0108 3.9582 5.0369
h3 1.9920 3.0137 3.9799 4.9143
h4 1.9728 3.0090 3.9899 4.7265

Order of convergence – velocity

h1 – – – –
h2 1.9784 3.1344 3.7027 5.0271
h3 2.0080 2.8752 3.8994 5.1116
h4 2.0038 2.9332 3.9505 4.3927
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Fig. 9. p Convergence for problem P2 in surface elevation and velocity for
grid refinement h2.
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that the CPU time of a simulation is proportional to the
total numbers of degrees of freedom, this suggests that
using p refinement is significantly more efficient than using
standard h refinement (at least, for smooth solutions as in
this particular problem). This fact is verified in Fig. 7
where the error is plotted as a function of the estimated
CPU time required for stability (see explanation below).
Clearly, a given error level can be obtained in a shorter
amount of time using p refinement rather than h refine-
ment. As previously mentioned, the time steps used in
these simulations were set arbitrarily small (t = 1 s) so that
the spatial errors were certain to be the dominant contri-
bution to the overall error. In order to compensate for this
in analyzing the efficiency of the method, the CPU times
used in plotting Fig. 7 have been adjusted based on the
time step restriction given by Eq. (26) as follows: for
p = 1 the CPU times for grid refinements h2, h3, and h4

are multiplied by factors of 2, 4, and 8, respectively. For
p > 1 the CPU times are adjusted by the factors for the
grid refinement and by the ratio of the factor (2p + 1)
for the given p and p = 1, i.e. the factor (2p + 1)/3 which
takes into account the additional reduction of the time step
that is introduced by increasing p.

Finally, the results of problem P1.2, which includes lin-
ear bottom friction, are briefly summarized in Table 2. It
can be noted that the convergence rates are very similar
to problem P1.1 with rates of approximately p + 1 being
obtained again. As with problem P1.1, we note again that
the slight degradation of the convergence rates computed
from h3 to h4 for p = 4 are due to machine precision.
Fig. 10. Domain o
4.2. Problem P2: Rectangular estuary with nonlinear SWE

In the previous set of test problems, the linear SWE were
solved and the wave propagation characteristics of the
solution were examined. With this problem, the full nonlin-
ear SWE are solved as a means of rigorously assessing the
performance of the method for flows with wave propa-
gation and highly nonlinear advection dominance. In
addition, there are nonlinear contributions from finite
amplitude terms as well as bottom friction.

As with the previous problem, the domain is a rectangu-
lar harbor or channel surrounded on three sides by land
boundaries with the remaining side on the east being an ele-
vation specified open ocean boundary. The domain is 1 km
wide in the north–south direction and 20 km long in the
east–west direction. The bathymetry is flat at 5 m of depth
with the exception of a 2 km long (in the east–west direc-
tion) 3 m amplitude sinusoidal bump in the center of the
domain that runs the entire width of the channel (see
Fig. 8). The problem is forced with a 1 m amplitude M2

tidal signal. These conditions, both the bathymetry and
large amplitude tidal forcing, are chosen to generate signif-
icant nonlinear components in the solution. Nonlinear bot-
tom friction is also included where the bottom friction
factor s is given by

s ¼ Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H
; ð33Þ

where Cf is the bottom drag coefficient (taken here to be
Cf = 0.003). The problem is started from rest, and the
f problem P3.
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amplitude of the tidal forcing at the open ocean boundary
is slowly raised from 0 m to the full 1 m amplitude over the
duration of half of a day using a hyperbolic tangent ramp
function. The simulation time is 2 days.

Again, the h and p convergence properties of the method
are investigated. Three levels of h and p refinement and are
used: h= 200 m, 100 m, 50 m; and p = 1, 2, 3. For lack of
an analytical solution, a coarse grid solution with p = 7 is
used as the ‘‘exact’’ solution for the purposes of computing
the error. The convergence results are presented in Table 3
where it can be observed that even for highly nonlinear
Fig. 11. Computational grids of pro
flows h convergence rates of approximately p + 1 are still
obtained for both the surface elevation and flow rates.
Again, exponential convergence rates are obtained in the
case of p-refinement as shown in Fig. 9.

4.3. Problem P3: Idealization of a coastal inlet with
nonlinear SWE

In this problem, we examine the idealization of a typical
coastal ocean modeling application, which gives rise to the
formation and advection of strong eddies. The idealized
blem P3: (a) grid h1; (b) grid h2.



Fig. 12. Velocity contours and vectors for problem P3.
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domain is shown in Fig. 10, which consists of a back-bay
that is connected to the open ocean to the west via an inlet
with twin jetties. The bathymetry varies linearly from 19 m
at the open ocean boundary to 5 m at the entrance of the
inlet. Immediately to the west of the inlet is an ebb shoal
approximately 750 m in diameter with a maximum height
of 2 m at the center of the top. The formation of an ebb
shoal is a common occurrence at coastal inlets and forms
due to the deceleration of the flow as it exits the inlet sys-
tem, which results in the deposition of large amounts of
sediment that are being transported by the flow. In many
instances, the growth of an ebb shoal can render a coastal
inlet useless and returning it to operational status, through
dredging operations, represents a significant cost to the
agencies that maintain them. Sediment transport models
(see for example [32]) can be used to analyze these systems,
but rely on the input of an accurate representation of the
flow field that resolves the fine-scale flow features of the
problem such as the formation of eddies.

Traditionally, with h-versions of finite element SWE
models, h-refinement would be added in the vicinity of
the inlet, jetties, and the ebb shoal until a satisfactorily level
of spatial resolution is achieved, which adequately captures
the flow field. This is often a time consuming, iterative pro-
cess and the level of h-refinement that is required can often
result in a significant increase in the computational cost.
However, as demonstrated in problem P1.1 the use of
uniform p-refinement in DG methods offers an efficient
alternative to adding h-refinement. Furthermore, the use
of p-refinement simplifies the design of the computational
grid, which would only be required to adequately resolve
the geometry and the bathymetry of the problem.

Therefore, in this problem we investigate the use of uni-
form p-refinement versus uniform h-refinement in terms
of resolving the fine-scale flow features of the problem.
The problem is solved on two computational grids, a very
coarse grid, h1 that has only two elements across the width
of the inlet and a finer grid, h2 which is a refinement of grid
h1 (see Fig. 11). Using these computational grids the prob-
lem is solved using p = 1,2,3, and 4. The simulations are
run for a period of 3 days. A periodic M2 tidal flow is
specified uniformly along the open ocean boundary such
that the maximum velocity in the throat of the inlet is
approximately 1 m/s. The nonlinear bottom friction for-
mulation as specified in the previous problem is used with
Cf = 0.003.

The results of a typical simulation are shown in Fig. 12,
which displays the velocity contours and vectors at four dif-
ferent stages of the tidal period. Fig. 12a and b show the for-
mation and advection of eddies prior to and during the
approximate time of maximum flood. Eddies form at the
tips of the two jetties and are advected in an easterly direc-
tion being constrained by the walls of the inlet channel. This
results in the elongated eddies seen in the western part of the
channel. Large circular eddies can be observed in the back-
bay at the exit of the inlet channel. These dual eddies form
at the corners where the channel flows into the back-bay
and are unconstrained and advect freely away from the
channel into the back-bay. Fig. 12c and d show the flow
prior to and during the approximate time of maximum
ebb tide. During the ebb flow, eddies are formed at the cor-
ners of the channel and back-bay and advect in a westerly
direction. Again these eddies are constrained by the channel
walls and result in the elongated forms seen in the eastern
part of the channel. The formation and advection of eddies
off the jetty tips, away from the channel, and around the ebb
shoal can also be observed. It is the combination of the
inlet along with the presence of the jetties, channel and
ebb shoal that creates a very complex, advection dominated
flow scenario. It is critical to accurately compute these com-
plex flow processes in order to correctly drive the transport
of passive constituents and sediment around and through
the inlet.



Fig. 13. Computed velocity contours and vectors for problem P3 using grid h1 for (a) p = 1, (b) p = 2, (c) p = 3, and (d) p = 4.

Fig. 14. Computed velocity contours and vectors for problem P3 using grid h2 for (a) p = 1, (b) p = 2, (c) p = 3, and (d) p = 4.
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Fig. 15. ADCIRC velocity contours and vectors for problem P3 using
grid h2.
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In Fig. 13, the results with grid h1 are shown using
approximations of p = 1, 2, 3, and 4. It can be seen that
the h1, p = 1 solution does not supply the necessary spatial
resolution along the interior of the channel to adequately
capture the formation of the elongated eddies in the wes-
tern part of the channel and the accompanying return flow.
Additionally, the large circular eddies in the back-bay fail
to be adequately resolved. Increasing to p = 2 provides
some improvement, but the solution still fails to capture
the complete formation of the eddies both in the back-
bay and the channel, although some return flow can be
seen along the sides of the channel. It can be seen that
increasing to p = 3 provides significant improvement in
resolving the structure of the eddies and strong return flow
can be observed along the jetties in the western part of the
channel. Finally, while the p = 4 solution provides some
additional improvement, it is qualitatively similar to the
p = 3 solution.

In Fig. 14, the results with grid h2 are shown again
using approximations of p = 1, 2, 3, and 4. The results
for the h2, p = 1 solution are qualitatively very similar to
those for the h1, p = 2 solution. However, it is interesting
to note that this simulation took approximately twice as
long (2.03·) to run as the h1, p = 2 solution. Likewise,
the results for the h2, p = 2 solution are qualitatively very
similar to the h1, p = 3 solutions but took nearly 4 times
longer (3.91·). Finally, the eddies are nicely resolved with
the h2, p = 3 and p = 4 solutions, however, it appears that
the h2, p = 4 solution may be exhibiting slight oscillations
indicating perhaps that the p = 3 solution may be optimal
for this problem at this level of grid resolution. As
we found for problem P1.1, the use of uniform p-refine-
ment offers a more efficient means of obtaining more
accurate solutions than using uniform h-refinement even
for flows exhibiting complex, two-dimensional flow
structures.

Finally, we compare the results obtained using the DG
method for this problem with results obtained from a
widely used CG based SWE model, ADCIRC [5]. Briefly,
ADCIRC solves a reformulation of the SWE (the continu-
ity equation is replaced by the so-called generalized wave
continuity equation (GWCE), see for example [4]) using a
CG finite element method in space and implicit/explicit
time stepping (see [5] for details). ADCIRC has been vali-
dated in a large number of test cases (see for example [33–
36]), though, historically it has shown deficiencies in advec-
tion dominated flow scenarios unless eddy viscosity is
added to the equations and/or much finer computational
grids than the ones presented here are used. Fig. 15a and
b show the velocity contours and vectors produced by
ADCIRC (using grid h2 and p = 1) during the approximate
time of maximum flood and ebb tide, respectively. It can be
seen that severe oscillations are present in the velocity field
in the back-bay and in the open ocean in the vicinity of the
jetties and the ebb shoal. Furthermore, the solution fails to
adequately resolve the structure of the eddies (compare to
Fig. 13).
5. Conclusions and discussion

In this paper, we have presented our implementation of
an hp DG method for the solution of the two-dimensional
SWE. Specific details were included on the implementation
of the method, and we examined the performance of the
method for both linear wave propagation problems and
highly nonlinear wave propagation problems with advec-
tion dominance. It was shown that the DG solutions
excelled at solving these problems with both low- and
high-orders of p, and the h and p convergence properties
of the method were demonstrated for both linear and
highly nonlinear problems.

We have also shown the ability of the method to resolve
the advection of eddies in a tidal inlet with jetties and an
ebb shoal. These solutions were computed with very coarse
levels of resolution without specifying any eddy viscosity or
applying slope limiters. We note that the CG based solu-
tions to this problem, as demonstrated, had significant
robustness and accuracy problems with the coarse levels
of resolution used in our computations.

The problems studied also indicate that highly nonlinear
problems perform very well with high levels of p. This
includes the highly advection dominated tidal inlet problem.
The DG method ably captured the relevant constrained and
unconstrained eddies that are generated and advected in this
problem. It is clear that high-order DG solutions have the
flexibility to locally form and advect the critical flow struc-
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tures without over-constraining adjacent elements leading to
a cascading of oscillations resulting from high-order interpo-
lation as can be the case in CG methods.

Finally, it appears that there are significant cost effi-
ciency benefits in using high-order p solutions for both
smooth and rapidly spatially varying flows. The exponen-
tial convergence rates that are obtained using p-refinement
with the DG method indicate the efficiency advantages
in applying p-refinement instead of h-refinement even in
highly nonlinear, two-dimensional flow scenarios. Future
work in this area involves implementing a p-adaptive strat-
egy to locally refine solutions dynamically in time.
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