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SUMMARY

Finite element approaches generally do not guarantee exact satisfaction of conservation laws especially
when Dirichlet-type boundary conditions are imposed. This article discusses improvement of the global
mass conservation property of quasi-bubble �nite element solutions for the shallow water equations,
focusing on implementations of the surface-elevation boundary conditions. We propose two alternative
implementations, which are shown by numerical veri�cation to be e�ective in improving the smoothness
of solutions near the boundary and in reducing the mass conservation error. The improvement of the
mass conservation property contributes to augmenting the reliability and robustness of long-term time
integrations. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element solutions to the shallow water equations (SWE) have been successfully used
to model ocean �ow problems such as tides and the propagation of storm surges and tsunami-
waves. On the other hand, in solving long-term coupled �ow-transport phenomena such as
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sediment transport and marine ecosystem dynamics, the �nite di�erence and �nite volume
methods tend to be preferred. One of the major reasons why the �nite element method is
avoided is that exact satisfaction of mass conservation is not guaranteed. Even a small amount
of error in mass conservation may not be acceptable when a long-term time integration is
involved and the accumulation of the error is signi�cant.
When one examines the mass conservation property of a �nite element scheme, it may

mean either one of the two di�erent scales of conservation: local or global conservation.
The former, local conservation is frequently noted when one emphasizes the superiority of
the control volume method or �nite volume method, which readily conserve conservative
quantities cell by cell. On the other hand, it is often said that the �nite element method is
not locally conservative. This statement may be true in case that element-wise conservation
of mass or other conservative quantities must be achieved. However, according to Huges
et al. [1], the �nite element method is locally conservative if one is satis�ed with a node-by-
node conservation. Further, they argued that an element-wise conservation is also achievable
by a deliberate post-processing.
With respect to the global conservation property, it is often considered that the �nite

element method should readily satisfy the global conservation properly. However, this is not
necessarily true when a Dirichlet-type boundary condition is involved [1]. This is because,
in the conventional implementation of the Dirichlet-type boundary conditions, discrete nodal
conservation laws are replaced with the speci�ed boundary condition; and thus the solution
may not satisfy the prescribed conservation law. This is related to the space of the test func-
tion ordinarily used, which vanishes on the Dirichlet boundary. The focus of this article is on
improving the mass conservation property by introducing alternative implementations of the
Dirichlet-type boundary conditions.
We have developed a software system to solve the SWE using the �nite element method.

While many �nite element formulations have been investigated in order to eliminate spurious
oscillation in �nite element �uid analyses [2–9], we have adopted a quasi bubble-function
approach, which was introduced by Mewis and Holz [10] to the SWE and extensively used in
the TELEMAC model [11, 12] developed by Electricit�e de France (EDF). Atkinson et al. [13]
showed that the quasi bubble-function �nite element model is equivalent to an optimal form
of the generalized wave continuity equation model, which has also been extensively exercised
in practical use [9].
While this mixed �nite element formulation using linear and quasi bubble-function elements

shows very good stability in the interior domain, our early work demonstrated that the quasi-
bubble scheme leads to a signi�cant instability when a surface-elevation boundary condition
is implemented as an essential boundary condition [14]. In the same article, we proposed
an alternative implementation called the ‘discontinuous boundary implementation’ (DBI). The
alternative implementation was found to be e�ective to remedy the instability related to the
surface-elevation boundary condition in 1-D cases.
In this article, we extend the DBI for 2-D cases. We rename it the ‘discontinuous velocity

boundary implementation’ (DVBI) for convenience. In addition, we propose another alter-
native formulation, which is called the ‘discontinuous surface-elevation boundary condition’
(DSBI) in this article. After the alternative formulations are introduced, numerical experi-
ments are presented. From the numerical experiments, it is indicated that these alternative
implementations are also e�ective in improving the mass conservation property in addition to
improving the stability of the computations.
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2. GOVERNING EQUATIONS AND FINITE ELEMENT APPROXIMATION

The two-dimensional SWE are written as

@�
@t
+

@Hui

@xi
= 0 (1)

@ui

@t
+ uj

@ui

@xj
+ g

@�
@xi

+ �ui + fi = 0 (2)

where indexes i∈ {1; 2} and j ∈ {1; 2} represent the horizontal Cartesian coordinate, � is the
surface elevation, H = h + � is the total water depth, h is the bathymetric depth, ui is the
horizontal velocity �eld, g is the gravitational acceleration, � is the bottom friction coe�cient.
The Coriolis force, surface wind stress, variable atmospheric pressure, tidal potential, horizon-
tal turbulent viscosity are incorporated into the body force fi. Equation (1) is the continuity
equation in primitive form, and Equation (2) is the momentum equation in non-conservative
form. The summation rule is implied.
Let �S denote the open boundary, where a surface elevation is speci�ed by a prescribed

value �̂ as

�= �̂ (3)

This surface-elevation boundary condition is often imposed to propagate tides from the open
ocean into the domain and is generally referred to as an open boundary. In this article, we
focus on various implementation of the open ocean boundary conditions. This very energetic
boundary conditions exhibit poor local accuracy, large mass conservation errors and signi�cant
stability problems.
Let �L and �S be partitions of domain boundary �. Let �L denote the land boundary

de�ned as

u · n=0 (4)

which represents no normal �ow.
Letting �∗ and u∗

i be test functions for the continuity and momentum equations, respectively,
we have the following weighted residual statements of the governing equations:

∫
�∗

(
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@t
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@xi

)
d� = 0 (5)

∫
u∗
i
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@ui

@t
+ uj

@ui

@xj
+ g

@�
@xj

+ �ui + fi

)
d� = 0 (6)

To obtain the matrix forms of the weighted residual equations, the unknown functions and
test functions are expanded with �nite element bases. We adopt a mixed interpolation to avoid
spurious modes. Speci�cally, the surface elevation � and the test function �∗ is interpolated
with the standard triangular linear element, and the velocity ui and the test function u∗

i is
interpolated with a triangular quasi bubble-function element. This type of mixed interpolation
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Figure 1. Sub-division of a triangle with a centroid node.
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Figure 2. Finite element bases of a quasi-bubble element: (a) basis for a standard
node; and (b) basis for a quasi-bubble node.

are introduced by Mewis and Holz [10] to the SWE, and was demonstrated to e�ectively re-
move spurious oscillations. The quasi bubble-function element has a centroid node in addition
to three nodes at each corner of a triangle. The centroid node divides a triangle into three
sub-triangles as shown in Figure 1. Letting each sub-triangle be a standard linear element,
a quasi-bubble element has piecewise linear bases shown in Figure 2. Thus � and �∗ are
expanded with the linear elements as

�=
N∑

�=1
���� and �∗=

N∑
�=1

�∗
��� (7)

where � is a nodal index, N is the number of corner nodes, and �� and �∗
� are nodal coe�cients.

On the other hand, ui and u∗
i are expanded with the quasi-bubble elements as

ui=
M∑

�=1
ui� � and u∗

i =
M∑

�=1
u∗
i� � (8)

where ui� and u∗
i� are nodal unknowns, and M is the number of the corner and centroid

nodes.
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By expanding the test functions and considering their arbitrariness, Equations (5) and (6)
yield the following nodal equations:

∫
�

@�
@t

�� d� +
∫
�

@Hui

@xi
�� d� = 0 (9)
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∫
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∫
�
g
@�
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 � d� +
∫
�
�ui � d� +

∫
�
fi � d� = 0 (10)

Unknown variables � and ui are not expanded for convenience of the following discussion.
An explicit two-step �nite di�erence scheme is adopted to discretize the time derivative

terms [15]. In order to minimize phase errors we use the consistent mass matrix in both the
left- and right-hand sides, instead of using a lumped mass matrix for speed-up.

3. IMPLEMENTATIONS OF BOUNDARY CONDITIONS

Our early work demonstrated that the quasi-bubble approach yields an erroneous solution
when a Dirichlet-type boundary condition of surface elevation, de�ned in Equation (3), is
implemented in a conventional manner [14]. Special attention should be paid to this boundary
condition since it is often used to propagate tides into gulfs or bays and the accuracy of global
mass conservation largely depends on a quality of solution on the boundary. We proposed
an alternative implementation of the surface-elevation boundary condition and tested it in a
one-dimensional problem [14]. In this article, we extend this paradigm to a two-dimensional
form. In addition, we propose another alternative implementation of the boundary condition.

3.1. Discontinuous velocity boundary implementation

We introduced an alternative implementation of the surface-elevation boundary condition in
[14] and called it a DBI because it allows a numerical solution to have dual velocity values
at each node on �S. We here extend it into a two-dimensional form and rename it a DVBI
to di�erentiate it from another alternative formulation, which we propose in the next section.

3.1.1. Derivation. Applying integration by parts to the �rst-order spatial derivative in
Equation (9), we obtain

∫
�

@�
@t

�� d�−
∫
�
Hui

@��

@xi
d� +

∫
�
��Huini d�=0 (11)

Further, Equation (10) may have an alternative form by applying integration by parts to the
advection term:

∫
�
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∫
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∫
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∫
�
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∫
�
 �uiujnj d� (12)
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Then, we have an alternative form of the momentum equation:

∫
�
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∫
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 �uiujnj d�=0 (13)

We assume that the normal component of velocity, i.e. un ≡ ujnj, in the boundary integral may
be de�ned as external and is an additional unknown independent of the internal unknowns.
Denoting an external normal component of velocity by ûn and letting Q̂n ≡Hûn, Equations (11)
and (13) may be rewritten as∫

�
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��Q̂n d�=0 (14)

and
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�
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 � d�

+
∫
�
�ui � d� +

∫
�
fi � d� +

∫
�
 �uiûn d�=0 (15)

3.1.2. Open boundary �S. On open boundaries, surface elevation is speci�ed by Equation (3).
In the conventional approach, Equation (3) is imposed in strong form, and nodal continuity
equations on �S are eliminated from a set of simultaneous equations. By contrast, as demon-
strated later, the DVBI being presented utilizes the nodal equations to obtain Q̂n, which is a
boundary �ux viewed as external to the domain, i.e. an added unknown quantity. The addi-
tional unknown function Q̂n can be determined on �S if Equation (14) is solved with respect
to Q̂n as follows: ∫

�S
Q̂n�� d�= −

∫
�

@�
@t

�� d� +
∫
�
Hui

d��

dxi
d� (16)

because � in the right-hand side is not unknown on �S but prescribed by Equation (3) as
a boundary condition. Similar formulations have been introduced by Lynch and Gray [16]
and Kolar et al. [17] for the wave equation model [9, 16]. Lynch and Gray [16] suggested
solving the wave equation for Q̂n to determine the normal component of velocity, and to
solve the tangential component of the momentum equation to obtain the tangential component
of velocity. (In contrast, the DVBI approach modi�es only the advection term as explained
later.) Kolar et al. [17] used Equation (16) as a post-processing step; they solved for Q̂n
to give perfectly mass-conserving �ux. (On land boundaries, they used the same equation to
determine �, enforcing no normal �ow with Q̂n = 0.)
Guided by their work, we utilize the auxiliary �ux, Q̂n, to remedy the instability that

arises with the surface-elevation boundary condition for quasi-bubble solutions to the SWE
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[14]. Using Q̂n solved with Equation (16) we obtain ûn, which is the normal component of
velocity on �S viewed as external to the domain. Since H on �S has been determined by the
boundary condition, ûn is readily obtained as follows:

ûn =
Q̂n

H
(17)

Because we found in Reference [14] that Equation (17) needs to be upstreamed to improve
stability, instead of using Equation (17) we use

ûn =

⎧⎪⎨
⎪⎩

Q̂n

H
; Q̂n ¡ 0 (in�ow)

un; Q̂n¿0 (out�ow)
(18)

Then ûn is utilized by substituting it into Equation (15). We hypothesize that the newly
obtained ûn, which is solved from the nodal continuity equation should improve the accuracy
of solution near the boundary. This is con�rmed by numerical experiments presented later.

3.1.3. Land boundary �L. The land boundaries, which are de�ned as no normal �ow bound-
aries by Equation (4), are implemented in this article by setting the normal component of
velocity equal to zero after performing a normal–tangential coordinate transformation. Thus
the land boundary is implemented as an essential boundary condition in a conventional way.
Note that the boundary integration terms in Equations (14) and (15) equal zero on �L since
ûn = 0 and Q̂n = 0 according to Equation (4).

3.2. Discontinuous surface-elevation boundary implementation

A DSBI is introduced in this section as another e�ective formulation to implement the surface-
elevation boundary condition with improved accuracy. The derivation of the DSBI also starts
with an integration by parts procedure. This time, the integration by parts is applied to the
spatial derivative of � in Equation (10). Then we have

∫
�

@ui

@t
 � d� +

∫
�
uj

@ui

@xj
 � d�−

∫
�
�
d �

dxi
d�

+
∫
�
�ui;  � d� +

∫
�
fi;  � d� +

∫
�
�̂ �ni d�=0 (19)

where Equation (3) is substituted in the boundary integration term.

3.2.1. Open boundary �S. We impose the surface-elevation boundary condition in weak form
by using the boundary integration term in Equation (19). Because of the weak enforcement of
the boundary condition, the computed surface elevation � on �S may di�er from the prescribed
boundary value �̂. Thus we call this alternative form of the surface-elevation boundary con-
dition a discontinuous surface-elevation boundary condition, due to the discontinuity between
� and �̂ on �S.
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Our numerical experiments indicate that, the discontinuity between � and �̂ sometimes
become too large to have a stable solution. In order to control the size of the discontinuity,
or jump, a jump-control term can be added to the continuity equation. The resulting modi�ed
continuity equation is written as

∫
�

@�
@t

�� d� +
∫
�

@Hui

@xi
�� d� +

∫
�S

�d(� − �̂)=0 (20)

where �d is a coe�cient with which the amount of the jump can be controlled. A similar idea
to this additional term has been applied with the discontinuous Galerkin method [18]. When �d
is very large, the jump control term works as penalty in the penalty method. However, in our
cases, it was observed that �d can take a small value relative to the coe�cient matrix terms
associated with @�=@t. Thus the boundary integration term in Equation (19) is substantially
used to enforce the surface-elevation boundary condition in a weak sense and the jump control
term is for supplemental use.

3.2.2. Land boundary �L. The land boundary de�ned by Equation (4) is implemented in
the same way as in the DVBI; it is implemented as an essential boundary condition in a
conventional way after coordinate transformation.

4. NUMERICAL VERIFICATION

The proposed alternative formulations are examined in this section by solving Lynch and
Gray’s quarter-annulus test problem with quadratically varying bathymetry [19]. The following
three cases are solved for speci�c purposes:

Case a: A linearized quarter-annulus problem, in which numerical solutions are compared
with the theoretical analytical solution derived by Lynch and Gray [19].

Case b: A non-linear quarter-annulus problem, in which the global mass conservation prop-
erty under a axis symmetric condition is examined.

Case c: A non-linear quarter-annulus problem with the Coriolis force, in which the global
mass conservation property under an asymmetric condition is examined.

The geometry is depicted in Figure 3. The inner radius r1 is set to 2× 105 ft (60.96 km), and
the outer radius r2 is 5× 105 ft (152.4 km). Bathymetry varies quadratically between h=10 ft
(3.048m) at r1 and h=62:5 ft (19.05m) at r2. The linear bottom friction is adopted with the
coe�cient � of 0:0001 s−1. �t is set to 12.5 s and 0.01. The coe�cient of the jump control
term, �d, is set to 0.01. An M2 tidal wave with the amplitude of 1.0 ft (0.3048m) is imposed
on the seaward boundary as a surface-elevation boundary condition. The grid used in this test
is shown in Figure 4.

4.1. Case a: a linearized quarter-annulus test problem

The quarter-annulus test problem was solved with the linearized SWE, which are written as

@�
@t
+

@hui

@xi
= 0 (21)
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Figure 3. Geometry and boundaries for the quarter-annulus test problem.

Figure 4. Triangular grid for the quarter-annulus test problem. In Case a, numerical solutions are
compared with the theoretical exact solution at the marked nodes.

@ui

@t
+ g

@�
@x
+ �ui = 0 (22)

where � is constant. The numerical results are compared with the exact analytical solution.
Figures 5 and 6 show the error in surface elevation � and radial velocity ur , respectively.
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Figure 5. Error pro�le of the surface elevation for Case a. The error is evaluated as a maximum
discrepancy of numerical solutions from the analytical solution during the tenth period.

The error plotted in the �gures is de�ned at each error evaluation node as

Es = max |�n − �a| in the tenth tidal cycle (23)

Ev = max |unr − uar | in the tenth tidal cycle (24)

where �n and unr represent the computed surface elevation and radial velocity component while
�a and uar are the corresponding analytical solutions. In the �gures, the CI stands for the con-
ventional implementation, with which the surface-elevation boundary condition is implemented
in strong form. We note in Figure 5 that the DSBI yields a slightly better solution than the
CI at interior nodes in spite of the fact that the DSBI solution does not exactly meet the
prescribed boundary condition at the open boundary node. With respect to the DVBI solution,
it does not improve the solution, or it has an even larger error than the CI. This is however
not an unexpected result as long as the increase of the error is small since that the DVBI
scheme is only e�ective in conjunction with the advection terms, which are not included in
the linearized form of the SWE described in Equations (21) and (22).
A more evident distinction is observed in the velocity error. Figure 6 shows that the CI

and DVBI locally yield a large discrepancy in velocity at the open boundary node. On the
other hand, the error pro�le of the DSBI solution is smooth near the boundary. An erroneous
solution on the boundary may deteriorate global mass conservation. Figure 7 shows the error
in the numerical boundary �ux. The error EBF is de�ned as

EBF(t)= −
∫
�S

H (t)ur(t) d�− d
dt

∫
�
�(t) d� (25)

The �rst term on the right-hand side represents the instantaneous in�ow through �S and the
second term represents the volume increase rate over the whole domain. Thus the di�erence

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1277–1296



ALTERNATIVE BOUNDARY IMPLEMENTATIONS FOR A QB FE SHALLOW WATER MODEL 1287

 0

 0.002

 0.004

 0.006

 0.008

 60  80  100  120  140  160

E
v 

(m
/s

)

R (km)

Velocity Error

CI
DVBI
DSBI

Figure 6. Error pro�le of the radial velocity for Case a. The error is evaluated as a maximum discrepancy
of numerical solutions from the analytical solution during the tenth period.

EBF should be zero if a numerical solution holds an exact value. In Figure 7, the CI and
DVBI show the same level of error, while the DSBI yields much smaller errors. In order to
see the accumulation of the boundary �ux error, we plotted �V� and �V�S in Figures 8–10.
The �V� and �V�S are de�ned as

�V�(t) =
∫
�
�(t) d�−

∫
�
�(0) d� (26)

�V�S(t) = −
∫ t

0

∫
�S

H (t′)ur(t′) d� dt′ (27)

Thus �V� and �V�S should be identical when an exact solution is obtained. Comparing
Figures 8 and 9, no distinction is observed. Again, this is an expected result because the
DVBI is e�ective only when the advection terms are active. While a small discrepancy in
cumulative mass conservation is observed for the CI and DVBI solutions in both Figures 8 and
9, the DSBI solutions shows an excellent cumulative mass conservation accuracy in Figure 10.

4.2. Case b: a non-linear quarter-annulus problem without the Coriolis force

In this case, we examine mass conservation properties with the non-linear SWE. Since the
Coriolis e�ect is not included, the solution ought to be axially symmetric.
The error in the boundary �ux de�ned in Equation (25) is plotted in Figure 11, which shows

that the CI solution yields the most erroneous boundary �ux, the DVBI solution reduces the
error to a considerable extent, and the DSBI solution extensively improves the mass balance.
While the e�ectiveness of the DSBI is very evident, that of the DVBI is not outstanding.
However, an important improvement can be found if one notices the symmetry of the positive
and negative portions of the mass imbalance errors. Denoting the amplitude of EBF in the
positive side by A+ and that in the negative side by A−, it is observed that A+ is quite di�erent
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Figure 7. Comparison of the discrepancy between in�ows through the open boundary and the water
volume increase rate in the computational domain (Case a).
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Figure 8. Volume increase calculated with the CI solution. The solid line was obtained with
the domain integral of the surface-elevation term. The dashed line was obtained with the

boundary integral of the �ux through �S (Case a).

from A− in the CI solution while A+ balances A− in the DSBI solution. The symmetric
distribution of the error in the DSBI solution is preferable because the positive and negative
parts cancel each other out. This results in a small accumulation of the mass error, which is
clearly observed in Figure 13.
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Figure 9. Volume increase calculated with the DVBI solution. The solid line was obtained
by domain integral of the surface-elevation term. The dashed line was obtained with the

boundary integral of the �ux through �S (Case a).
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Figure 10. Volume increase calculated with the DSBI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case a).

Figure 12 shows a global mass conservation error in the CI solution. The error is linearly
accumulating as time proceeds. On the other hand, the error does not seem to be accumulating
for the DVBI solution scheme in Figure 13. With respect to the DSBI solution, Figure 14
shows its excellent mass conservation property.
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Figure 11. Comparison of the discrepancy between in�ows through the open boundary and the water
volume increase rate in the computational domain (Case b).
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Figure 12. Volume increase calculated with the CI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case b).

4.3. Case c: a non-linear quarter-annulus test problem with the Coriolis force

In this case, in order to examine the proposed boundary implementation in an axially asym-
metric condition, the Coriolis term is added to the governing equations used in Case b.
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Figure 13. Volume increase calculated with the DVBI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case b).
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Figure 14. Volume increase calculated with the DSBI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case b).

The boundary �ux error, EBF, de�ned in Equation (25) is plotted in Figure 15. The trend
of the amount of mass error is the same as that of Case b, shown in Figure 11. However, the
positive–negative asymmetry of the mass error pro�le seems to be reduced for the CI solution,
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Figure 15. Comparison of the discrepancy between in�ows through the open volume increase rate in
the computational domain (Case c).
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Figure 16. Volume increase calculated with the CI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case c).

compared with the symmetrical no Coriolis case shown in Figure 11. This is supported by
Figure 16, which shows that the cumulative mass conservation error for the CI solution is
reduced, compared with Case b (Figure 12). On the other hand, as shown in Figure 17, there
is now a small accumulation of the mass conservation error observed for the DVBI solution.
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Figure 17. Volume increase calculated with the DVBI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case c).
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Figure 18. Volume increase calculated with the DSBI solution. The solid line was obtained
with the domain integral of the surface-elevation term. The dashed line was obtained with

the boundary integral of the �ux through �S (Case c).

This may indicate that the DVBI solution is less e�ective in correcting a boundary �ux that is
not perpendicular to �S. This hypothesis is supposed by the fact that in the derivation process
of the DVBI, only the normal component of velocity is modi�ed by Equation (18). Regarding

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1277–1296



1294 S. BUNYA, S. YOSHIMURA AND J. J. WESTERINK

Figure 19. Distribution of the absolute value of velocity at the 32 840th time
step, obtained with the CI solution (Case c).

Figure 20. Distribution of the absolute value of velocity at the 32 840th time
step, obtained with the DVBI solution (Case c).
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Figure 21. Distribution of the absolute value of velocity at the
32 840th time step, obtained with the DSBI solution (Case c).

the DSBI solution as shown in Figure 18, the in�ow through the open boundary excellently
balances with the interior volume increase.
In order to visually examine the contribution of the proposed boundary implementations,

the absolute value of velocity is plotted in Figures 19, 20 and 21 using solutions obtained
with the CI, DVBI and DSBI, respectively. Comparing these �gures, it is observed that
the DVBI improves a smoothness of the velocity solution near the open boundary, but that
the DSBI yields a still smoother solution. It is clear from the precedent discussions that the
proposed boundary implementations augment the accuracy of solutions, which results in the
improvement of the mass conservation property.

5. CONCLUDING REMARKS

In this article, we have discussed the global mass conservation property of quasi-bubble mixed
�nite element formulations of the SWE. We have introduced two alternative implementations
of the surface-elevation boundary condition, which are derived by applying integration by
parts to some �rst-order spatial derivatives.
The proposed implementations, the DVBI and DSBI, were tested with numerical experi-

ments. The results showed that both the DVBI and DSBI have a good potential to reduce
the error in mass conservation through the surface-elevation Dirichlet-type boundary. The nu-
merical experiments veri�ed that the DSBI remarkably improves the global mass conservation
property. In comparison, improvements of the DVBI seems to be limited when a �ow on the

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1277–1296



1296 S. BUNYA, S. YOSHIMURA AND J. J. WESTERINK

surface-elevation boundary is not perpendicular to the boundary. In terms of the jump-control
term in the DSBI scheme, investigation of an adequate range of the coe�cient �d is planned
in our future work. In addition to the improvements in the mass conservation property, our
preliminary numerical tests not presented here showed that both the DVBI and the DSBI
improve the stability especially when there is an irregularity in the grid alignment near open
boundaries in the direction normal to the boundary.
The numerical experiments demonstrated that, in order for a �nite element formulation to

be globally conservative, Dirichlet-type boundary conditions may need to be carefully imple-
mented. In practical problems which involve long-term time integration or transport phenom-
ena on the computed �uid motion, an accumulating error in mass conservation may seriously
a�ect the reliability of solutions. Therefore, some kind of remedy such as the proposed
formulations needs to be adopted to avoid such unphysical solutions.

REFERENCES

1. Hughes TJR, Engel G, Mazzei L, Larson MG. The continuous Galerkin method is locally conservative. Journal
of Computational Physics 2000; 163:467–488.

2. Kawahara M, Hirano H, Tsubota K, Inagaki K. Selective lumping �nite element method for shallow water �ow.
International Journal for Numerical Methods in Fluids 1982; 2:89–112.

3. Kashiyama K, Ito H, Behr M, Tezduyar T. Three-step explicit �nite element computation of shallow water �ow
on massively parallel computer. International Journal for Numerical Methods in Fluids 1995; 22:885–900.

4. Brezzi F, Bristeau MO, Franca LP, Mallet M, Rog�e G. A relationship between stabilized �nite element methods
and the Galerkin method with bubble functions. Computer Methods in Applied Mechanics and Engineering
1992; 96:117–129.

5. Franca LP, Farhat C. On the limitation of bubble functions. Computer Methods in Applied Mechanics and
Engineering 1994; 117:225–230.

6. Matsumoto J, Khan AA, Wang SSY, Kawahara M. Shallow water �ow analysis with moving boundary technique
using least-squares bubble function. International Journal of Computational Fluid Dynamics 2002; 16:129–134.

7. Matsumoto J, Umetsu T, Kawahara M. Stabilized bubble function method for shallow water long wave equation.
International Journal of Computational Fluid Dynamics 2003; 17:319–325.

8. Westerink JJ, Gray WG. Progress in surface water modeling. Reviews of Geophysics (Suppl.). American
Geophysical Union, 1991; 210–217.

9. Kolar RL, Westerink JJ. A look back at 20 years of gwc-based shallow water models. Proceedings of the XIII
International Conference on Computational Methods in Water Resources, Calgary, Alberta, Canada, 2000;
899–906.

10. Mewis P, Holz K-P. A quasi bubble-function approach for shallow water waves. Advances in Hydro-Science
and Engineering, vol. 1, 1993; 768–774.

11. Galland JC, Goutal N, Hervouet JM. Telemac: a new numerical model for solving the shallow water equations.
Advances in Water Resources 1991; 14:138–148.

12. Hervouet JM. On spurious oscillations in primitive shallow water equations. Proceedings of the XIII
International Conference on Computational Methods in Water Resources, Calgary, Alberta, Canada, 2000;
929–936.

13. Atkinson JH, Westerink JJ, Hervouet JM. Similarities between the quasi-bubble and the generalized wave
continuity equations to the shallow water equations. International Journal for Numerical Methods in Fluids
2004; 45:689–714.

14. Bunya S, Westerink JJ, Yoshimura S. Discontinuous boundary implementation for the shallow water equations.
International Journal for Numerical Methods in Fluids 2005; 47:1451–1468.

15. Okamoto T, Kawahara M, Ioki N, Nagaoka H. Two-dimensional wave run-up analysis by selective lumping
�nite element method. International Journal for Numerical Methods in Fluids 1992; 14:1219–1243.

16. Lynch DR, Gray WG. A wave equation model for �nite element tidal computations. Computers and Fluids
1979; 7:207–228.

17. Kolar RL, Gray WG, Westerink JJ. Boundary conditions in shallow water models—an alternative implementation
for �nite element codes. International Journal for Numerical Methods in Fluids 1996; 22:603–618.

18. Zienkiewicz OC, Taylor RL, Sherwin SJ, Peir�o J. On discontinuous Galerkin methods. International Journal
for Numerical Methods in Engineering 2003; 58:1119–1148.

19. Lynch DR, Gray WG, Analytic solutions for computer �ow model testing. Journal of the Hydraulics Division
1978; 104:1409–1428.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1277–1296


