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In this paper, dynamic p-adaptive Runge–Kutta discontinuous Galerkin (RKDG) methods for the two-
dimensional shallow water equations (SWE) are investigated. The p-adaptive algorithm that is imple-
mented dynamically adjusts the order of the elements of an unstructured triangular grid based on a sim-
ple measure of the local flow properties of the numerical solution. Time discretization is accomplished
using optimal strong-stability-preserving (SSP) RK methods. The methods are tested on two idealized
problems of coastal ocean modeling interest with complex bathymetry – namely, the idealization of a
continental shelf break and a coastal inlet. Numerical results indicate the stability, robustness, and accu-
racy of the algorithm, and it is shown that the use of dynamic p-adaptive grids offers savings in CPU time
relative to grids with elements of a fixed order p that use either local h-refinement or global p-refinement
to adequately resolve the solution while offering comparable accuracy.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In many coastal ocean modeling applications, a large-domain
strategy is employed in which the open ocean boundary is placed
in deep waters far from the area of detailed interest, such as a
coastal inlet or estuarine system; see, for example, [2,16–18]. Such
an approach facilitates simple open boundary condition specifica-
tion and has been shown to minimize the influence of boundary
conditions on the numerical solution in the coastal region [2]. Typ-
ically a large-domain, unstructured computational grid will consist
of larger elements in the relatively quiescent waters of the deep
ocean and then gradually transition to smaller elements in the re-
gion of the continental shelf and in the shallower coastal area; see,
for example, Fig. 1. In the case of structured grids, a common ap-
proach is the use of nested grids (see, e.g., [13]), which, similarly,
will transition from coarse structured grids in the deep ocean to fi-
ner structured grids in the coastal region.

The size of the elements of an unstructured computational grid
in the coastal region will initially be dictated by the geometric
complexity of the domain. The grid spacing must be made suffi-
ciently small as to give adequate representation of important geo-
metric features such as intricate coast lines, bathymetry and
topography, or man made structures such as jetties or weirs. Typ-
ically after an initial ‘‘geometric design” of a computational grid, h
ll rights reserved.

.

(grid size) refinement, and/or p (polynomial order) refinement or
enrichment, in the case of hp finite element methods, is added lo-
cally (by the user) to provide higher spatial resolution in areas that
are known, assumed, or shown to require additional resolution due
to local flow properties. The design of a large-domain computa-
tional grid that can adequately resolve the flow features of a given
problem, without becoming excessively expensive in terms of
computational resources, is often a time-consuming, iterative pro-
cess. Additionally, given the temporal nature of the solutions, the
use of a fixed, static-in-time computational grid is inefficient, in
that any portion of the domain that develops a complex flow struc-
ture that requires additional resolution at any time must be ade-
quately resolved with the computational grid for all time.

The use of dynamic h- and/or p-adaptive procedures offers a
very natural and convenient solution to these problems. Starting
with a computational grid that has been designed to adequately re-
solve the geometry of a given domain, adaptivity will automati-
cally adjust the elements locally, based on either error estimates
or some local characteristic of the solution such as the gradient,
in order to provide the necessary spatial resolution to accurately
capture the flow field as it evolves. For hp-adaptive algorithms,
p-refinement is generally used in areas where the solution is
smooth, while h-refinement is applied in areas where the solution
develops discontinuities or in areas of singularities.

For many practical coastal ocean modeling applications, the
solutions, while developing steep gradients, will remain smooth
in large portions of the domain (the development of discontinuities
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Fig. 2. Definition of the free surface elevation f and the bathymetric depth h
relative to a geoidal surface.

Fig. 1. An example of a large-domain unstructured grid used to model flow in the
Chesapeake Bay area (boxed area). Most of the resolution is provided along the
shallower coastal areas and, in particular, in the area of Chesapeake Bay.
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in the form of either tidal bores or hydraulic jumps occur mostly in
problems of special interest such as dam break scenarios or con-
stricting channels). This situation then would favor the use of
adaptive p-refinement over traditional h-refinement. Kubatko
et al. [9] recently demonstrated the advantages of using p-refine-
ment instead of h-refinement, for smooth advection dominated
flows in coastal regions using DG methods. For a series of idealized
harbor and inlet problems with smooth solutions, it was demon-
strated that accurate numerical solutions could be obtained most
efficiently by using relatively coarse computational grids consist-
ing of higher-order elements. In that work, global p-refinement
was applied, that is every element in the domain was refined to
a fixed order p. In fact, all hp finite element methods for the two-
dimensional shallow water equations (SWE) that have appeared
in the literature have used this approach, i.e. they have utilized lo-
cal h-refinement only, while using a globally defined p that is cho-
sen prior to the computations (see, e.g., [6,7,9,11]). Such an
approach using DG methods however, while shown to be more
efficient than uniform h-refinement, does not take full advantage
of the discontinuous nature of DG solutions, which allows for easy
implementation of local p-refinement without the hindrance of
maintaining C0 continuity of the solution between elements as in
continuous Galerkin (CG) methods. In the context of the large-do-
main strategy, local p-refinement is especially useful, and applying
it adaptively, of course, is a natural choice given the time-varying
nature of the solutions.

To this end, in this paper, we investigate a dynamic p-adaptive
DG method for the two-dimensional SWE. While previous authors
have investigated h-adaptive techniques using DG methods for the
SWE [1,14], there has been no previous work in the area of p-adap-
tation for the SWE. The adaptive algorithm that is employed here
makes use of a ‘‘sensor”, which was proposed by Burbeau and Sa-
gaut [3] in their work on p-adaptive DG methods for the Navier–
Stokes equations, that can be used as a simple and computationally
efficient means to indicate where to adjust the order of the ele-
ments of the computational grid locally. In regions where the solu-
tion is relatively uniform, a lower-order polynomial is used,
otherwise a higher-order polynomial of a specified degree is used.
The algorithm is easily implemented using the hierarchical basis
proposed by Dubiner [5] at little additional computational cost.
Although the employed adaptive algorithm is developed in a heu-
ristic manner, it is shown to successfully reduce error levels and
provide sharper resolution of key features of the flow field. Fur-
thermore, use of the dynamic p-adaptive algorithm greatly simpli-
fies the initial design of computational grids and is shown to
provide savings in CPU time when compared to computational
grids with elements of a fixed order p that use local h-refinement
or global p-refinement to adequately resolve the solution.

This paper is organized as follows: In the next section, we pres-
ent the system of governing equations – the two-dimensional SWE.
In Section 3, we outline our approach for solving this system of
equations, which uses a p-adaptive DG method in space and a class
of optimal strong-stability-preserving (SSP) Runge–Kutta methods
in time. After formulating the basic DG method, we describe the p-
adaptive algorithm that is applied. This is followed by a presenta-
tion of the optimal SSP Runge–Kutta methods that are used to dis-
cretize the semi-discrete equations in time. Numerical results are
then presented in Section 4 that demonstrate the computational
advantages of using such an approach by applying the method to
two idealized problems of coastal ocean modeling interest. Finally,
in Section 5, we make some concluding remarks and discuss future
work using adaptive DG methods for the SWE.

2. Governing equations

The SWE are applicable in describing free surface flow problems
where the depth of a water body is sufficiently small compared
with its horizontal flow scales. The two-dimensional SWE consist
of the depth-integrated continuity equation and the equations for
the balance of momentum in the horizontal, x and y, directions.
The equations can be expressed in the form:

@tfþ @xðHuÞ þ @yðHvÞ ¼ 0; ð1Þ

@tðHuÞ þ @x Hu2 þ 1
2

gðH2 � h2Þ
� �

þ @yðHuvÞ ¼ gf@xhþ Fx; ð2Þ

@tðHvÞ þ @xðHuvÞ þ @y Hv2 þ 1
2

gðH2 � h2Þ
� �

¼ gf@yhþ Fy; ð3Þ

where f is the elevation of the free surface measured from the geoid
(positive upward), h is the bathymetric depth measured from the
geoid (positive downward), H ¼ fþ h is the total height of the water
column (see Fig. 2), g is the gravitational constant, u and v are the
depth-averaged velocities in the x and y directions, respectively,
and Fx and Fy represent any additional terms that may be present
due to Coriolis force, bottom friction, surface stresses such as wind
or wave radiation stresses, etc. In particular, for the bottom friction
we use:

Fx ¼ �sHuþ � � � ð4Þ

Fy ¼ �sHv þ � � � with s ¼ Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

H
; ð5Þ

where Cf is the bottom drag coefficient (we take Cf ¼ 0:003 here).
Eqs. (1)–(3) are supplemented with suitable initial and boundary
conditions.
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Fig. 3. Distance dj used in the computation of HðiÞj .
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Defining the following vectors:

w ¼
f

Hu

Hv

2
64

3
75; s ¼

0
gf@xhþ Fx

gf@yhþ Fy

2
64

3
75; ð6Þ

and the flux function matrix:

F ¼
Hu Hv

Hu2 þ 1
2 gðH2 � h2Þ Huv

Huv Hv2 þ 1
2 gðH2 � h2Þ

2
64

3
75: ð7Þ

Eqs. (1)–(3) can be written in the compact form:

@twðiÞ þ r � FðiÞðwÞ ¼ sðiÞðwÞ; i ¼ 1;2;3; ð8Þ

where wðiÞ, FðiÞ, and sðiÞ are the i-th row entries of w, F, and s,
respectively.

3. Numerical method

3.1. Weak formulation and DG spatial discretization

Given a domain X � R2 with a piecewise smooth boundary @X,
let Th define a finite element partition of X into a set of non-over-
lapping subdomains Xe, which do not cross @X. Let @Xe denote the
boundary of Xe, and let n denote the unit outward normal of @Xe.

The SWE can be put into a weak form by multiplying each equa-
tion by a sufficiently smooth test function v, integrating over Xe,
and integrating the divergence term by parts:

ð@twðiÞ; vÞXe
� ðrv; FðiÞÞXe

þ ðFðiÞ � n;vÞ@Xe
¼ ðsðiÞ; vÞXe

8Xe; ð9Þ

where i ¼ 1, 2, or 3 and ð�; �ÞD denotes the L2ðDÞ inner product.
A discrete weak formulation of the problem is obtained by

approximating the solution components wðiÞ by wðiÞh , which belong
to the space of functions Vh defined by:

Vh ¼ v 2 L2ðXÞ : v jXe
2 PkðXeÞ 8Xe 2 Th

n o
; ð10Þ

where Pk denotes the space of polynomials of degree k defined on
Xe, and by choosing a test function vh 2 Vh. It is noted that there
is no C0 continuity requirement across element edges in the space
Vh and, thus, k can vary from element to element. It is this fact that
allows for easy implementation of local p-refinement within the
framework of the DG method.

With this space of functions defined, the discrete weak formu-
lation is:

ð@tw
ðiÞ
h ; vhÞXe

� ðrvh; F
ðiÞÞXe

þ ðbf ðiÞn ; v
int
h Þ@Xe

¼ ðsðiÞ; vhÞXe
8vh

2 Vh; ð11Þ

where again i ¼ 1, 2, or 3 and v int
h denotes the trace of the test func-

tion from the interior of Xe. Note also that the quantity FðiÞ � n in the
boundary integral has been replaced by a so-called numerical fluxbf ðiÞn (see, e.g., [4]).

The specific details of the algorithm that we have implemented
for the solution of Eq. (11) using the DG method can be in found in
[9]. In particular, we note that we use an orthogonal, hierarchical
basis for the space Vh, quadrature rules that are optimal (or in
some cases near optimal) for the triangle to evaluate the area inte-
grals, and the Roe or local Lax Friedrich method for the approxima-
tion of the boundary fluxes. In this paper, we limit ourselves to
spatial approximations Pk with k 6 3, although in previous work
we have tested spatial approximations of k 6 7 with good results
[9].

Moving the second and third terms of Eq. (11) to the right-
hand-side and inverting the (diagonal) mass matrix, the semi-dis-
crete equations can be written in the compact form:
d
dt

wh ¼ LhðwhÞ; ð12Þ

where wh is a vector containing the degrees of freedom of the com-
ponents, wðiÞh for each element and Lh is the DG spatial
approximation.

3.2. A p-adaptive algorithm

The present section describes a simple and computationally
efficient p-adaptive algorithm that can be easily implemented
within the framework of the DG method. The algorithm makes
use of a ‘‘sensor” originally proposed in [3] where a dynamic p-
adaptive method was developed and applied to the solution of
the Navier–Stokes equations. Our proposed adaptive algorithm
makes use of this sensor as an indicator of where we apply p-
refinement, but includes some important modifications of the algo-
rithm proposed in [3], which we have found, through numerical
experiments, improve the results. In what follows, we assume that
the solutions are smooth. In the case of discontinuous solutions,
the scheme could be extended along the lines of what is described
in [3].

The algorithm can be described as follows: First, upper and low-
er limits of p approximation, PL and PH are defined, where the
superscripts L and H denote low and high (relatively speaking) p
approximations, respectively (i.e. H > L). Initially we set
PkðXeÞ ¼ PL for all Xe (we note that for all the problems considered
here we use zero initial conditions, i.e. the water starts from rest,
so there is no error in the interpolation of the initial condition
regardless of the value of PL). At the end of each time step, a sensor
is computed as an indicator of where to apply p-refinement. The
sensor is defined by:

HðiÞj ¼
wðiÞh ðmjÞ �wðiÞh ðcÞ

dj

�����
�����; ð13Þ

where wðiÞh ðmjÞ and wðiÞh ðcÞ are the values of the i-th solution compo-
nent evaluated at the midpoint mj of edge j, and the barycenter c of
the given element, respectively, and dj is the distance between mj

and c (see Fig. 3). The sensor is computed for the edges of each ele-
ment for each solution component. If at some time t one or more of
the HðiÞj for a given element exceed a tolerance � (specified by the
user), then for the next time step the p approximation on that ele-
ment for all the solution components wðiÞh is increased by one; other-
wise the PL approximation is still used.

Once an element is refined, by which we mean p-refined, it is
either further refined or unrefined at subsequent time steps
according to the following rules: (1) It is unrefined if all of the
HðiÞj 6 �. (2) It is further refined if any of the HðiÞj > � provided, of
course, that the resulting PkðXeÞ 6 PH . However, the following



Table 1
CFL conditions for the SSP Runge–Kutta methods used in this paper.

s;m CFLL2

3, 2 0.5882
5, 3 0.4060
6, 4 0.2747
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additional constraint is added for the case of unrefining elements:
once an element is refined it cannot be unrefined until it has been
held at the current level of p approximation for a fixed number of
time steps nlock (specified by the user). This was implemented be-
cause it was observed from numerical experiments that in many
instances elements were refined but then unrefined before the
higher-order solution components became non-zero and the use
of the p-adaptive algorithm did not result in solutions of increased
accuracy. This also helps control the ‘‘flickering” of the order of the
elements. We comment on the selection of a value for the nlock

parameter in the numerical results section. Additionally, we only
allow the polynomial degree of an element to be increased by
one during a given time step.

In summary, the algorithm is succinctly given as follows:

(1) Define PL and PH

(2) Initially at time t ¼ 0 set PkðXeÞ ¼ PL 8Xe

(3) At each time tn compute the HðiÞj 8Xe kþ1
�

(i) If any HðiÞj > �ðiÞ then PkðXeÞjtnþ1 ¼ P if kþ 1 6 H
Pk if kþ 1 > H

(ii) If all HðiÞj 6 �
ðiÞ then

PkðXeÞjtnþ1 ¼ Pk�1 if k� 1 P L and ncount P nlock

Pk if k� 1 < L

�

where ncount is the number of time steps the element has been at
the current Pk approximation.

We note that we have implemented the algorithm using the
orthogonal, hierarchical basis of Dubiner [5]. Thus, refining p on
a given element simply amounts to adding additional basis func-
tions or higher-order ‘‘modes” to the lower-order space. Likewise,
unrefining p on a given element simply amounts to taking away
basis functions or higher-order modes. We note that in the case
of unrefinement, given our choice of basis, simply taking away
the higher-order basis functions is equivalent to taking an L2 pro-
jection of wðiÞh onto the lower-order space. Finally, we also remark
that along edges where the neighboring elements are of different
order it is necessary to use the edge quadrature rule dictated by
the higher-order element in order to maintain accuracy and
stability.

3.3. The time discretization

The systems of ODE’s given by Eq. (12) are discretized in time
using explicit s-stage SSP Runge–Kutta methods, which can be
written in the general form:

wð0Þ ¼ wn;

wðiÞ ¼
Xi�1

l¼0

ailwðlÞ þ DtbilLðwðlÞÞ
� �

; i ¼ 1;2; . . . ; s;

wnþ1 ¼ wðsÞ;

ð14Þ

where ail and bil, which are subject to certain constraints (see, e.g.,
[15]), are the set of coefficients that define the Runge–Kutta method
and the vectors wðnÞh and wðnþ1Þ

h are the numerical solutions at times
t and t þ Dt, respectively, where Dt is the time step. Following [15],
we denote an s-stage, mth order SSP Runge–Kutta by SSP(s,m).

We use an m ¼ ðH þ 1Þth order accurate SSP Runge–Kutta
method in conjunction with a PH or hybrid PL=PH DG spatial dis-
cretization. The SSP schemes that are used are those identified in
[10] that produce optimal, in terms of computational efficiency,
ðH þ 1Þth order accurate so-called RKDG methods, i.e. methods
that use a PH DG spatial discretization and ðH þ 1Þth order accurate
Runge–Kutta time discretization. For a P1 DG spatial discretization,
we use the optimal three-stage, second-order SSP Runge–Kutta
scheme (SSP(3,2)). In conjunction with a P2 or hybrid P1=P2 DG
spatial discretization, we use the optimal SSP(5,3) scheme, and
with a P3 or hybrid PL=P3 DG spatial discretization (L ¼ 1 or 2)
we use the optimal SSP(6,4) scheme. As an example of these
schemes, the optimal SSP(3,2) Runge–Kutta method is given by:

wð1Þh ¼ wðnÞh þ
1
2

DtLhðwðnÞh Þ;

wð2Þh ¼ wð1Þh þ
1
2

DtLhðwð1Þh Þ;

wðnþ1Þ
h ¼ 1

3
wð1Þh þ

2
3

wð2Þh þ
1
3

DtLhðwð2Þh Þ:

ð15Þ

See [15] and the references therein for the ail and bil values for the
other schemes.

Due to the fact that these schemes are explicit, the size of the
time step is restricted by a CFL condition. We note that the use
of the stage-exceeding-order (s > m) SSP Runge–Kutta schemes
in conjunction with DG spatial discretizations results in RKDG
methods with improved CFL conditions for linear stability over
the ‘‘standard” RKDG methods, i.e. ones that use s ¼ m Runge–Kut-
ta SSP schemes, as demonstrated in [10]. The CFL conditions ob-
tained from a one-dimensional, linear stability analysis in that
work for the schemes mentioned above are summarized in Table
1. Using these results an estimate for the time step restriction for
the two-dimensional SWE is given by:

Dt 6 min
Xe

he � CFLL2

jkmaxj

� �
; ð16Þ

where he is a suitably defined element diameter of Xe and kmax is an
estimate of the maximum (in absolute value) of the eigenvalues of
the Jacobian of the flux function matrix F with respect to w over Xe.

4. Numerical results

In this section, we apply the p-adaptive algorithm described in
the previous section to two test cases of coastal modeling inter-
est. The test cases are problems examining flow in domains rep-
resenting idealizations of a continental shelf break and a coastal
inlet.

The test cases that are examined are problems that exhibit a
wide range of scales and require very localized refinement in spe-
cific regions of the domain in order to obtain accurate solutions.
With h-type finite element SWE models, this is achieved by provid-
ing additional spatial resolution in the form of h-refinement in key
areas of the domain. However, determining the location and extent
of the h-refinement that is needed for a particular problem can be a
time consuming process. Furthermore, the level of h-refinement
required can also lead to a significant increase in computational
cost.

With our numerical tests, we demonstrate the following main
points: (i) The stability of the p-adaptive algorithm; (ii) the effi-
ciency advantages that can be obtained using grids with dynamic,
local p-refinement using the adaptive procedure versus grids with
elements of a fixed order p that use either local h-refinement or
global p-refinement to adequately resolve the solution, as is typi-
cally done for refinement with hp methods for the SWE; (iii) the
ability of the dynamic p-adaptive methods to detect, and subse-
quently resolve, important flow features that evolve during the
course of a simulation.
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4.1. Relative costs of h- and p-refinement

Before presenting the numerical results we remark on the rela-
tive costs of the P1, P2, and P3 RKDG methods. Recall that in con-
junction with a Pk DG spatial approximation we use an optimal
ðkþ 1Þ-order RK time discretization. The relative costs of the meth-
ods, on the same computational grid, are mainly a function of three
factors: (i) The ratio of the degrees of freedom, (ii) the ratio of the
CFL conditions given in Table 1, and (iii) the ratio of the number of
stages of the RK method. Thus, the cost of the P2 method relative to
the P1 method is approximately ð6=3Þð0:5882=0:4060Þð5=3Þ � 4:83,
i.e. the P2 method is 4.83 times more expensive than the P1 meth-
od, and similarly the relative cost of the P3 method to the P1 meth-
od is approximately ð10=3Þð0:5882=0:2747Þð6=3Þ � 14:28. We note
that the true measures of the relative costs of the methods are, of
course, not this simple and involve additional factors such as the
number of edge and area quadrature points, code structure, etc.,
however, we have found that the consideration of these three fac-
tors alone gives a fairly reasonable estimate that is consistent with
what is observed computationally.

We can compare these measures with using h-refinement. For
example, refining the elements uniformly as shown in Fig. 4 gives
a four fold increase in the number of degrees of freedom and re-
quires a halving of the time step. Thus, the computational cost is
increased by a factor of 8 compared to the above mentioned fac-
tor of approximately 5 using p-refinement from p ¼ 1 to p ¼ 2. In
the former case, the error (optimally) decreases by a factor of 4,
while in the latter case it decreases (again optimally) by at least
two orders of magnitude. Indeed, in our previous work involving
DG methods for the SWE [9], it was established that for problems
with smooth solutions global p-refinement is significantly more
efficient in obtaining a specified error level than using global
h-refinement.

With respect to the efficiency of the p-adaptive methods, we
note the following. As mentioned previously, in the case when
we use a PL=PH p-adaptive method an ðH þ 1Þ-order RK method is
used in order to maintain high-order accuracy. Thus, the P1=P2

method will be between 50% and 100% of the cost of the P2 method,
depending on the number of elements that are refined, the P2=P3

method will be somewhere between 60% and 100% of the cost of
the P2 method, and the P1=P3 will be somewhere between 30%
and 100% of the cost of the P3 method. To a small extent, the value
used for the nlock parameter in Section 3.2 also effects the efficiency
of the method. Again, this parameter was included in the p-adap-
tive algorithm to help control the ‘‘flickering”of the element order.
For the problems considered here, the value of nlock was chosen
based on numerical experiment. Specifically, nlock was increased
from 0 until the presence of ‘‘flickering” elements was nearly elim-
inated (this was determined by a visual inspection of the data).
Values of nlock in the range of 10–20 proved to eliminate this ‘‘flick-
ering” and improve error levels without significantly affecting the
efficiency of the method. Development of a more rigorous proce-
dure for the selection of the nlock parameter will be considered in
future work. Finally, we remark that the efficiency of the dynamic
p-adaptive methods could also be improved by implementing
adaptive time stepping. This will also be considered in future work.
Fig. 4. A standard 1:4 grid refinement.
4.2. Test case 1: idealized continental shelf break

The domain of the first test case, including its areal extent and
its bathymetry, is shown in Fig. 5. The rectangular domain is
1500 km in the x (east–west) direction and 1000 km in the y
(north–south) direction (see Fig. 5a). The eastern edge of the do-
main (x ¼ 1500 km) is an open ocean boundary along which a tidal
forcing is specified. The three remaining boundaries are specified
as no-normal flow boundaries. The bathymetry of the domain is
an idealization of the bathymetry of the Atlantic Ocean along a
cross section extending perpendicular from the east coast of the
US (x ¼ 0) out into the deep ocean (see Fig. 5b) and is given by:

hðx; yÞ ¼ 2500þ 2480
tanhð3Þ tanhð0:010ðx� 300ÞÞ: ð17Þ

This equation defines a depth along the coast (x ¼ 0) equal to 20 m.
At approximately x ¼ 200 km the depth begins to increase more
rapidly at the continental shelf break. Then at approximately
x ¼ 350 km a more gradual slope is resumed until a depth of
approximately 5000 m is reached at x ¼ 1500 km. This bathymetric
profile is uniform in the y direction. A gravitational constant of
g ¼ 9:81 m=s2 was used.

The domain is discretized using two different computational
grids. The first, which we will refer to as the base grid and denote
by h0, consists of 1200 uniform triangular elements as shown in
Fig. 6a. The node-to-node spacing of the base grid is 50 km
throughout the domain. The second (refined) grid, hr (Fig. 6b) pro-
vides additional spatial resolution in the vicinity of the continental
slope and on the continental shelf by halving the node-to-node
spacing in those regions. Previous studies that have solved similar
problems [2,8] using the computational model ADCIRC [12], which
uses a CG finite element method with P1 elements for the spatial
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Fig. 5. (a) Plan view of the domain for test case 1. (b) Bathymetric profile along
cross section A-A.
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Fig. 6. The computational grids of test case 1: (a) the base grid consisting of 1200 elements. (b) Local refinement of the base grid in the region of the continental shelf and
break.
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discretization, have shown that providing additional spatial resolu-
tion in the form of h-refinement in these areas, especially in the
shallower coastal region and in areas where the slope of the
bathymetry changes greatly, is crucial in obtaining accurate
solutions.

Using the base grid, we perform simulations (described below)
with P1, P2, and P3 DG spatial discretizations globally, i.e. the same
Pk approximation throughout the entire domain, and with adaptive
P1=P2, P1=P3, and P2=P3 DG spatial discretizations. Using the second
grid, which provides local h-refinement in the vicinity of the con-
tinental slope and on the continental shelf, we perform a simula-
tion using global P1 elements. A highly resolved simulation is
used to compute an ‘‘exact” solution from which errors are
computed.

The simulations begin from rest and motion is induced by spec-
ifying an M2 tidal signal (a period of approximately 12.42 h) along
the open ocean boundary. The forcing is applied gradually, building
up to a 1 m amplitude over a period of 2 days. The simulations are
run for a period of 5 days, and solutions are recorded every 15 min
from T ¼ 4 days to T ¼ 5 days. The time steps that are used in the
simulations are approximately 50% of the time step that is com-
puted from the estimate given by Eq. (17). This is done to insure
that the spatial errors are the dominant portion of the error, while
also taking into account the fact that higher-order, and also smal-
ler, elements impose stricter time step restrictions, as already
noted, and thus affect the overall efficiency of the method. A grav-
itational constant of g ¼ 9:81 m=s2 was used.

A comparison of the errors and run times of the different simu-
lations are shown in Table 2. The L1 errors reported are obtained by
multiplying the error at the barycenter of each element by the ele-
ment area, summing theses errors over the whole domain, and
then dividing by the total area of the domain.

We note the following regarding these results. (i) The CPU times
of the P2 and P3 methods relative to the P1 method are roughly in
line with what was to be expected based on the estimates dis-
cussed in the previous section. (ii) The errors for the P2 and
P1=P2 methods are very comparable (on the same order of magni-
tude) with the P2 method giving only slightly better results. Like-
Table 2
Errors and relative run-times for the seven different simulations for test case 1.

Simulation L1 error L1 error Relative
Surf. Elev. Velocity CPU times

h0, P1 5.1040e–02 7.6230e–03 1.00
h0, P2 1.0430e–03 9.4058e–05 4.93
h0, P3 1.1610e–04 2.1276e–05 16.28
h0, P1=P2 2.2208e–03 1.2832e–04 3.48
h0, P1=P3 1.0577e–03 9.4513e–05 9.00
h0, P2=P3 1.5948e–04 2.4664e–05 11.40
hr , P1 1.1492e–02 7.3230e–03 4.49
wise, the P3 and P2=P3 errors are very comparable, again, with
the P3 method giving only slightly lower error levels. In both cases,
the CPU times of the dynamic p-adaptive methods are approxi-
mately 70% of the CPU time of their global Pk counterparts (recall
that given the additional constraints imposed by the higher-order
time stepping these results can be no better than 50%). Thus, the
P1=P2 and P2=P3 methods are more efficient than using global p-
refinement while offering comparable accuracy. (iii) Unfortunately,
the use of the P1=P3 method, which stood to provide the greatest
gains in efficiency, did not pay off for this problem. While the
P1=P3 simulation ran in only 55% of the CPU time of the P3 method
it only offered levels of accuracy comparable to the P2 method but
took roughly twice as long to run. (iv) The use of the local p-refine-
ment is clearly more efficient than using local h-refinement for this
problem. For example, the P1=P2 simulation ran in less time (78%)
than the h-refined hr , P1 solution but gave errors an order of mag-
nitude lower. (v) As shown in Fig. 7, which shows the simulation
during a period of peak incoming tide, elements were only adapted
in the coastal region and in the vicinity of the continental shelf as
indicated by the shaded elements. Finally, we note that in the case
that the ‘‘deep ocean” portion of a grid takes up a larger percentage
of the total area of the domain slightly better efficiency results
would most likely be observed for the p-adaptive methods.

4.3. Test case 2: idealized inlet

The second test case is an idealization of a coastal inlet. The do-
main, shown in Fig. 8, measures 4.5 km in the x (east–west) direc-
tion and 3 km in the y (north–south) direction, and consists of two
distinct regions – a back-bay region to the east and an open ocean
region to west. These regions are connected by a 0.75 km long
channel that extends into the open ocean region via a pair of jet-
ties. The bathymetry in the back-bay region and through the chan-
Fig. 7. Degree of the elements for the adaptive P1=P2 simulations (shaded
elements=P2) during a time of peak incoming tide with velocity vectors
superimposed.



Fig. 10. Velocity contours of the P1 solution.

Fig. 8. The domain of test case 2 with bathymetric contours.
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nel is flat at a depth of 5 m below resting water level. The bathym-
etry in the open ocean region varies linearly from a depth of 5 m at
the entrance of the channel to a depth of 19 m at the far western
boundary with the exception of a large ebb shoal, which measures
approximately 750 m in diameter with a peak height 2 m below
the geoid, located at the western entrance of the channel. The far
western boundary is an open ocean boundary at which a tidal forc-
ing will be specified while the remaining boundaries are all speci-
fied as no-normal flow. Again, a gravitational constant of
g ¼ 9:81 m=s2 was used.

The computational grid used for the simulations is shown in
Fig. 9. As was investigated for the previous problem, we examine
the additional efficiency advantages that can be realized using p-
adaptive grids and make a qualitative comparison of the results ob-
tained using these grids compared to the grids using fixed, global
p-refinement. In particular, we examine the effectiveness of the
p-adaptive grids to adequately resolve the fine-scale flow features
of the problem such as the structure of the jet issuing from the in-
let and the interaction of the jet with the ebb shoal – namely, the
formation and propagation of eddies around the ebb shoal and in
the channel. In contrast to the previous problem, we do not exam-
ine a locally h-refined grid as the extent of h-refinement that is
needed for this problem in order to adequately resolve the solution
results in a grid with a number of elements that is nearly equal to
the number of elements in a globally h-refined grid. It has already
been established that using global h-refinement is less efficient for
this problem than using global p-refinement [9].

We ran five different simulations using the computational grid
as shown in Fig. 9 with P1, P2, and P3 elements globally and with
Fig. 9. The computational grid for test case 2.
adaptive P1=P2 and P2=P3 grids. Based on the results of the previous
test case we do not test the P1=P3 method. Again, the simulations
start from rest, and an M2 tidal forcing is applied gradually building
up to the full amplitude over a period of one day. The forcing is
Fig. 11. Velocity contours of the P2 (top) and P1=P2 (bottom) solutions.



Fig. 13. Degree of the elements during ebb tide with velocity vectors superimposed
(shaded elements=P2).
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specified such that the maximum velocity in the center of the
channel during maximum flood tide is approximately 1 m/s. The
simulations are run for a period of 2 days. The time steps are cho-
sen as described for the previous problem.

We examine the solution during an approximate time of maxi-
mum ebb tide. The P1 solution velocity contours are shown in
Fig. 10, the P2 and P1=P2 solutions are shown in Fig. 11, and finally
the P3 and P2=P3 solutions are shown in Fig. 12. In both of the p-
adaptive cases, it can be observed that the results of the PL=PH

methods are qualitatively very similar to the results of the fixed,
globally p-refined grids that use PH elements. More specifically,
first it is noted that at this level of coarse h resolution the P1 meth-
od fails to adequately resolve the eddies that form during the times
of maximum ebb tide around the ebb shoal. However, the P2 solu-
tion provides substantially better results than the P1 solution with
the eddies that are shed off of the ebb shoal now clearly being vis-
ible. As can be noted from Fig. 11, the P2 and P1=P2 solutions are
almost indistinguishable with the P2 solution providing only
slightly better resolution of the eddies. Going from P2 to P3 the
improvement in the resolution of the eddies is, perhaps, less dra-
matic than going from P1 to P2, however, there is still a visible
improvement in the solution. The use of the P2=P3 method offers
slightly ‘‘sharper” resolution of the eddies than the P2 method,
but this time the global p and p-adaptive methods are not as sim-
ilar to each other as the P2 and P1=P2 solutions. However, a close
visual inspection of the Figs. 10–12 reveals that both the P3 and
Fig. 12. Velocity contours of the P3 (top) and P2=P3 (bottom) solutions.

Fig. 14. Degree of the elements during flood tide with velocity vectors superim-
posed (shaded elements=P2).
P2=P3 methods are resolving smaller scale eddies in the eastern
part of the channel that were not resolved with the other simula-
tions. With respect to efficiency, the adaptive PL=PH methods ran,
again, in approximately 70% of the time as their PH counterparts
while offering significantly better resolution of the eddies than
the P1 method. Finally, Figs. 13 and 14 show where the elements
have been refined during ebb and flood tides, respectively. It can
be observed that the elements are refined by the dynamic p-adap-
tive algorithm in the area of strong currents and track the move-
ment of the eddies through the inlet, into the back-bay, and as
they shed off of the ebb shoal.

5. Concluding remarks

In this paper, we have developed and implemented a dynamic
p-adaptive RKDG method for the two-dimensional SWE on
unstructured triangular grids. The algorithm was described in de-
tail, and the method was shown to perform well in two test cases.
Specifically, a quantitative analysis comparing error levels and run
times for the case of an idealized shelf break problem showed that
the use of dynamic p-adaptive methods was more computationally
efficient than the use of fixed grids that use either local h-refine-
ment or global p-refinement to resolve the solution in the shallow
coastal area and along the shelf break while offering comparable
accuracy. Likewise, for the problem of the idealized coastal inlet,
the p-adaptive algorithm was shown to provide qualitatively sim-
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ilar results in the resolution of the fine scale flow features that
developed around the ebb shoal as those in the case of using the
higher-order approximation globally, but ran in 70% of the CPU
time of the globally refined p solutions.

Future work in the area of adaptivity using DG methods will in-
volve the implementation of h-adaptation, which allows the use of
hanging nodes or non-conforming grids, the development and
implementation of a fully hp-adaptive model, and the application
of these models to field studies.
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