
J Sci Comput (2009) 40: 315–339
DOI 10.1007/s10915-009-9268-2

A Performance Comparison of Continuous
and Discontinuous Finite Element Shallow Water Models

Ethan J. Kubatko · Shintaro Bunya · Clint Dawson ·
Joannes J. Westerink · Chris Mirabito

Received: 31 May 2008 / Revised: 18 December 2008 / Accepted: 5 January 2009 /
Published online: 23 January 2009
© Springer Science+Business Media, LLC 2009

Abstract We present a comparative study of two finite element shallow water equation
(SWE) models: a generalized wave continuity equation based continuous Galerkin (CG)
model—an approach used by several existing SWE models—and a recently developed dis-
continuous Galerkin (DG) model. While DG methods are known to possess a number of
favorable properties, such as local mass conservation, one commonly cited disadvantage is
the larger number of degrees of freedom associated with the methods, which naturally trans-
lates into a greater computational cost compared to CG methods. However, in a series of
numerical tests, we demonstrate that the DG SWE model is generally more efficient than
the CG model (i) in terms of achieving a specified error level for a given computational
cost and (ii) on large-scale parallel machines because of the inherently local structure of

E.J. Kubatko (�)
Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University,
Columbus, OH 43210, USA
e-mail: kubatko.3@osu.edu

S. Bunya
Department of Systems Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656,
Japan
e-mail: bunya@sys.t.u-tokyo.ac.jp

C. Dawson · C. Mirabito
Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin,
TX 78712, USA

C. Dawson
e-mail: clint@ices.utexas.edu

C. Mirabito
e-mail: mirabito@ices.utexas.edu

J.J. Westerink
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame,
IN 46556, USA
e-mail: jjw@photius.ce.nd.edu

mailto:kubatko.3@osu.edu
mailto:bunya@sys.t.u-tokyo.ac.jp
mailto:clint@ices.utexas.edu
mailto:mirabito@ices.utexas.edu
mailto:jjw@photius.ce.nd.edu

316 J Sci Comput (2009) 40: 315–339

the method. Both models are verified on a series of analytic test cases and validated on a
field-scale application.

Keywords Shallow water equations · Finite elements · Discontinuous Galerkin ·
Generalized wave continuity equation

1 Introduction

The shallow water equations (SWE) are used to model free surface flow in the deep ocean,
coastal ocean, estuaries, rivers, open channels, and coastal floodplain. Many flow processes
are described by these equations including tides, the propagation of flood waves in rivers,
tsunami waves, and storm surges associated with hurricanes. Often coupled with these hy-
drodynamic phenomena are the transport of quantities such as pollutants, salinity and sed-
iment. The simulation of these types of processes typically requires solving the SWE over
large, geometrically complex spatial domains for long periods of time. Such a situation ne-
cessitates the use of large-scale computational models that can accurately and efficiently
obtain numerical solutions to the SWE.

Over the past three decades, various finite element based SWE models have been de-
veloped for these purposes; see, for example, [1, 9, 17, 19–22, 24, 28, 29]. Finite ele-
ment methods are a judicious choice as the base algorithm for SWE models because of
the flexibility they provide, through the use of unstructured meshes, for accurately re-
solving a wide range of flow scales and geometrically complex vertical and horizontal
boundaries introduced by both the bathymetry/topography and the coastline. Historically,
one of the more widespread continuous Galerkin (CG) finite element approaches that has
been used for the solution of the SWE involves solving a reformulation of the continuity
equation—the so-called “wave continuity equation”. This approach was first proposed by
Gray and Lynch [12], was extended for the solution of a generalized wave continuity equa-
tion (GWCE) by Kinnmark [14], and forms the basis of the advanced circulation (ADCIRC)
model [22] developed by the fourth author and a number of collaborators. While this ap-
proach has been successfully used for a number of finite element studies (see, for exam-
ple, [10, 12, 25, 29–31]), it is not without its disadvantages. Most notably perhaps, the
performance and mass conservation properties of the method are highly dependent on a
user-selected GWCE weighting parameter; see, for example, [5, 14–16].

In part, to address the issues associated with GWCE-based CG models, discontinuous
Galerkin (DG) finite element models have recently been developed for the solution of the
SWE; see, for example, [1, 9, 17, 21, 28]. DG methods possess a number of favorable
properties for solving the SWE such as the ability to model highly advective flows in-
cluding problems with hydraulic jumps or tidal bores (discontinuities), the ability to vary
polynomial approximations element-by-element, and the ability to employ non-conforming
meshes, i.e. meshes with so-called hanging nodes. These last two facts simplify the imple-
mentation of automatic h (mesh) and p (polynomial order) adaptive strategies. Moreover,
DG methods inherently possess local (element-by-element) mass conservation properties,
which has been shown to be an important factor when coupling flow and transport mod-
els [7]. While DG methods have a number of advantageous properties, one major drawback
that has often been cited in the literature is the larger number of degrees of freedom that
are involved in comparison to CG methods; see, for example, [6, 8, 13]. More specifically,
spatial discretization of the two-dimensional SWE using a CG method with linear triangular
elements results in 3Nn total degrees of freedom where Nn is the number of nodes (vertices)

J Sci Comput (2009) 40: 315–339 317

in a given computational mesh. A full DG discretization of the SWE (i.e., both the continuity
and momentum equations are discretized using a DG method) on the same computational
mesh using linear elements results in 9Ne total degrees of freedom where Ne is the number
of elements in the mesh. For many typical unstructured meshes, the ratio Ne/Nn ≈ 2. Thus,
a DG method using linear triangular elements will typically have 6 times as many degrees
of freedom compared to a corresponding CG method on a given mesh.

This increase in the numbers of degrees of freedom will obviously have a negative impact
on the relative efficiency of DG methods compared to CG methods. Indeed, a preliminary
comparative study of CG, DG, and hybrid DG/CG finite element SWE models confirmed
that the DG approach was on the order of 4 to 5 times more expensive than the CG approach
on a per time step basis on serial machines [8]. At the same time, preliminary studies have
also suggested that the DG methodology offers significant improvements in accuracy and
robustness over their CG counterparts [1, 17]; however a detailed study comparing model
run times and error levels has been lacking to properly assess the net computational cost
of the two approaches. That is, while CG based models may perform faster serially than
DG models they could have larger error levels on a given mesh and/or converge to the true
solution at a slower rate upon subsequent mesh refinements thus actually making the DG
approach more efficient in terms of achieving a specified error level for a given compu-
tational cost. Furthermore, and perhaps more importantly, given the rising availability and
use of massively parallel computing resources, the parallel scalability of algorithms is be-
coming an increasingly important factor in the assessment of computational models. While
the DG methods involve more “work” per element than CG methods, and may be deemed
computationally inefficient on serial or small-scale parallel machines, the reported high par-
allelizability of DG methods (see, for example, [3, 4]) indicates that DG based models may
be significantly more scalable on large-scale parallel clusters.

The goal of this paper is to provide a detailed comparative study of CG and DG finite
element SWE models to investigate these issues. Specifically, the models will be applied to
a set of test problems where they will be compared with respect to accuracy, convergence
rates, serial and parallel run times, and efficiency. The models will be tested on both lin-
ear and nonlinear idealized problems as well as a full-scale application. The CG model that
is investigated here is the previously mentioned GWCE-based ADCIRC model—hereafter
referred to as ADCIRC–CG—that uses continuous, piecewise linear approximations on trian-
gular elements. The DG model that is used employs the approach outlined in [17]. It allows
the use of arbitrary polynomial approximations over elements, but herein, for purposes of
comparison to ADCIRC–CG, we limit our investigation to linear approximations. We will re-
fer to this model as ADCIRC–DG due to the fact that, although it uses a completely different
solution strategy than ADCIRC–CG, it has been integrated into the ADCIRC framework in
the sense that it uses the same I/O, domain decomposition for parallelization, and physical
parameterizations, e.g. bottom friction and surface stress formulations, etc.

The rest of this paper is as follows. In the next section, we give summaries of the CG and
DG models that are used in this study. We begin by presenting the governing equations that
are discretized by the models and then give brief summaries of the numerical approaches
used in the models including the parallelization strategies that are employed. In Sect. 3,
we present the results of our extensive numerical testing, and we make some concluding
remarks in Sect. 4.

318 J Sci Comput (2009) 40: 315–339

2 CG and DG Model Summaries

2.1 Governing Equations

Vertical integration of the Navier–Stokes equations along with the assumptions of hydrosta-
tic pressure and a vertically uniform horizontal velocity profile results in the SWE, which
consist of the depth-averaged continuity equation L and the momentum equations M:

L ≡ ∂ζ

∂t
+ ∇ · q = 0, (2.1)

M ≡ ∂q
∂t

+ ∇ · (qq/H
) + τbf q + fc × q + gH∇ζ − ε�q − F = 0. (2.2)

In the equations above, ζ is the free surface water elevation relative to the geoid (positive
upward), H = ζ + hb is the total depth of the water column where hb is the bathymetric
depth relative to the geoid (positive downward), q ≡ (Hu,Hv) where u and v are the depth
averaged velocities in the x and y directions, respectively, τbf is the bottom friction factor,
fc is the Coriolis parameter, g is the gravitational constant, ε is the eddy viscosity coeffi-
cient, and F is meant to represent additional body and surface forces, which may be due
to, for example, surface wind stress, variable atmospheric pressure, and tidal potential forc-
ing. A quadratic friction factor is generally used, i.e. τbf = Cf

√
u2 + v2/H where Cf is the

bottom friction coefficient, the exception being when the linearized form of the SWE are
solved, in which case τbf is taken as a constant. The variables ζ and q are functions of the
horizontal coordinates x and y and time t .

These equations are solved over a spatial domain � in R
2 for time t > 0. Initial free sur-

face elevations ζ0 and velocities u0 are specified at time t = 0, and along ∂�, the boundary
of �, ζ and/or q are specified for all time t . To apply a finite element method, the domain
� is first partitioned into a set of non-overlapping elements �e . Here we only consider
triangular elements.

2.2 ADCIRC–CG Methodology

As previously mentioned, the ADCIRC–CG model solves a reformulation of the depth-
averaged continuity equation (2.1). Using the notation of the previous section, this refor-
mulated equation, the GWCE, can be written as:

∂L
∂t

+ ∇ · M + τ0 L = 0, (2.3)

where τ0 is the so-called GWCE weighting parameter. The GWCE is solved in conjunc-
tion with the momentum equations M to yield ζ and q. The main motivation behind this
reformulation is that a CG discretization of the linear forms of these equations gives rise
to a monotonic dispersion relationship, which yields non-oscillatory solutions. This is in
contrast to the folded dispersion relationship obtained from a CG discretization of the prim-
itive equations using equal-order interpolation spaces; see, for example, [2, 14]. However, as
mentioned previously, one of the drawbacks of this approach is that the performance of the
method depends on the selection of the GWCE weighing parameter τ0. As a general guide-
line, τ0 is typically set equal to the largest value of an equivalent linear friction factor (e.g.,
for linear friction τ0 = τbf , for quadratic friction τ0 = max(Cf

√
u2 + v2/H)); see [15].

J Sci Comput (2009) 40: 315–339 319

To apply a CG method to (2.3) and (2.2), a weak formulation is first obtained by multi-
plying each equation by a sufficiently smooth test function v and integrating over the domain
�, where certain terms of (2.3) are integrated by parts. In ADCIRC–CG, ζ and q are approxi-
mated by ζh and qh and the test function is set to v = vh—all three of which are continuous,
piecewise linear functions. The momentum equation (2.2) is integrated explicitly in time,
and the mass matrix associated with the time derivative term is mass-lumped; therefore no
linear systems are solved to compute the velocity. The GWCE (2.3) is discretized using three
time levels, mostly centrally weighted. A linear system involving the mass matrix is solved
at each time step to update the elevation. This system is sparse, symmetric and positive defi-
nite. A Jacobi preconditioned conjugate gradient method is used to solve it. For more details
concerning the implementation of ADCIRC–CG; see [22].

2.3 ADCIRC–DG Methodology

ADCIRC–DG directly solves (2.1) and (2.2) without reformulation. In this case, a weak for-
mulation is obtained by multiplying each equation by a sufficiently smooth test function
v and integrating over a single element where the divergence terms of (2.1) and (2.2) are
integrated by parts, which generates a boundary integral of the flux terms. In our imple-
mentation, these boundary flux terms are approximated using either the so-called local Lax
Friedrichs (LLF) or Roe flux [17].

With a DG method, the test functions and approximations of ζ and q are all chosen to be
discontinuous, piecewise polynomials of some degree k, defined on each element. Further-
more, an explicit Runge-Kutta method is used to integrate in time. In our implementation,
the degree of approximation k is arbitrary, and we have tested up to k = 7 with good re-
sults [17]. We note that this has been implemented using the so-called Dubiner basis—the
orthogonality of which results in a “matrix-free” algorithm. In this study, we restrict our
attention to k = 1 and second-order Runge-Kutta time-stepping for sake of comparison to
ADCIRC–CG. More details of the DG implementation that is used can be found in [17].

2.4 Parallelization

For parallel simulations with both ADCIRC–CG and ADCIRC–DG, the finite element parti-
tion of the computational domain � is subdivided into a set of N subdomains {ωj }N

j=1 using
METIS [18]. Each subdomain is assigned its own processor (core). Let ∂ωj denote the por-
tion of the boundary of ωj that is not part of ∂�. Elements belonging to ωj that have at
least one vertex on ∂ωj also belong to the neighboring subdomain(s), i.e., neighboring sub-
domains share a “layer” of elements; see Fig. 1 where this is shown for two neighboring
subdomains. The set of elements that ωi shares with a neighboring subdomain ωj is denoted
by ω̄ij , i.e. ω̄ij ≡ ωi ∩ ωj where i �= j .

Given the local structure of the DG method, it is simplest to begin the discussion with the
description of the ADCIRC–DG parallelization strategy. To this end, consider a subdomain
ωi and one of its neighboring subdomains ωj as illustrated in Fig. 1. As noted above, these
subdomains will share a common set of elements ω̄ij . In the DG method, all calculations
are local to an element with the exception of the computation of the boundary flux integrals,
which involves the neighboring element to an edge. Thus, considering subdomain ωi , those
elements of ωi that have an edge on ∂ωi require information from the neighboring subdo-
main ωj . Initially, dummy values are used for this missing information and the degrees of
freedom for each element of ωi are computed as usual. Corrected degrees of freedom for
elements with edges on ∂ωi can then be obtained from the neighboring subdomain ωj via

320 J Sci Comput (2009) 40: 315–339

Fig. 1 Overlap of two
neighboring subdomains for
parallelization

message passing, given the fact these elements and their edge neighbors are wholly con-
tained within ωj and will therefore have correct degrees of freedom. We note that this local
communication between neighboring subdomains is the only communication required for
the parallelization of the DG method. This communication occurs at the end of each Runge-
Kutta stage in the time-stepping algorithm.

The parallelization of ADCIRC–CG follows the same structure. Instead of elemental de-
grees of freedom, nodal degrees of freedom at vertices on ∂ωi are passed from ωj to ωi . This
exchange of information occurs after each conjugate gradient iteration in the linear solution
step. We remark that since we are using a simple Jacobi preconditioner, the preconditioning
matrix is independent of the domain decomposition. Generally 5 to 15 iterations of the lin-
ear solver are required per time step to reach a solver tolerance of 10−6. Furthermore, two
dot products (global sums) and one matrix-vector multiply must be performed during each
conjugate gradient iteration, which hinders the parallel performance of the algorithm.

3 Numerical Tests

In this section, we present the results of our numerical tests. All simulations were performed
on the Texas Advanced Computing Center’s (TACC) Dell Linux Cluster, Lonestar, which
consists of 5,840 cores within 1,460 Dell PowerEdge 1955 compute blades (nodes). Each
compute node has two processors—each a Xeon 5100 series 2.66 GHz dual–core processor.
Reported serial and parallel run times, denoted Ts and Tp , respectively, are wall clock times
to the nearest second. Reported times are typically an average of 3 identical simulations.

3.1 Accuracy, Convergence, and Serial Run Times

In this subsection, we consider a set of test cases for the linear SWE with analytic solutions
proposed by Lynch and Gray [23]. Examination of these problems allows us to systemati-
cally investigate and rigorously assess the accuracy, convergence and relative computational
costs of the CG and DG models. We begin with a brief description of these problems.

J Sci Comput (2009) 40: 315–339 321

Fig. 2 Domains of the test cases of Lynch and Gray

The domains of the test cases are as defined in Fig. 2. The boundaries at y = 0, y = L,
and x = x1 are land or no-normal flow boundaries, and at x = x2 a surface elevation is

322 J Sci Comput (2009) 40: 315–339

Table 1 Bathymetry parameters
for test cases of Lynch and Gray n h0 hb(x1) hb(x2)

0 3 3 3

1 1.00 × 10−4 6 15

2 1.11 × 10−9 4 25

Fig. 3 Computational meshes
h1 and h2 used in the
convergence studies

prescribed by a periodic tidal forcing function of the general form:

ζ(x2, y, t) = Re
{
ζ0(y)eiωt

}
(3.1)

where ζ0 is, in general, a complex function representing the tidal forcing amplitude and
phase, ω is the frequency of the tidal forcing function, and i = √−1. The bathymetry of the
domain is defined by:

hb(x, y) = h0x
n (3.2)

where h0 and n are specified constants with h0 > 0; see Fig. 2. For our numerical tests,
we take the width of the domain in the y-direction to be L = 45 km. In the x-direction,
we take x2 − x1 = 2L. We consider flat, linear, and quadratic bathymetric profiles—n = 0,
1, and 2, respectively, in (3.1); see Table 1. A tidal amplitude of ζ0 = 0.5 m is used with
a frequency of ω ≈ 0.0001405 s−1, which corresponds to an M2 tide, and a linear friction
factor of τbf = 0.0001 s−1 is used.

The problems are solved on the four computational meshes. The coarsest mesh has a
node-to-node spacing in both the x and y directions of h = 7500 m and has 144 elements.
The three finer meshes are obtained by applying successive 1:4 refinements of this mesh
with the finest mesh thus having a node spacing of h = 937.5 m and consisting of 9216
(= 144 × 43) elements (Fig. 3 shows the first two meshes). We denote these meshes as h1

J Sci Comput (2009) 40: 315–339 323

Table 2 Mesh summaries, serial
run times (Ts) and relative costs
() of the models

Mesh # of # of ADCIRC-CG ADCIRC-DG 	

Elements Nodes Ts Ts

h1 144 91 119 378 3.17

h2 576 325 348 1168 3.36

h3 2304 1225 1208 4415 3.65

h4 9216 4753 4547 21577 4.75

Fig. 4 Serial run times as a
function of the number of
elements

through h4 from coarsest to finest. Simulations are started from time t = 0 and run for a
period of T = 10 days using a time step of �t = 1 s, which is well below the maximum
allowable time step estimated from the CFL condition for all the meshes. Initial conditions
are computed for the models from the exact solutions. Absolute element errors are computed
at the barycenter of each element of the mesh as the absolute value of the difference between
the exact and numerical solutions at the final time of the simulation. The L1 errors reported
in the tables that follow are then computed by multiplying the element errors by the area
of the element, summing these products over the whole domain and dividing by the total
area of the domain. The L∞ errors reported are the maximum of the element errors over the
whole domain.

First, we examine the serial run times Ts and the relative costs of the two models on the
four computational meshes. The relative costs are reported as the ratio 	 of the ADCIRC–CG

and ADCIRC–DG run times. Thus, 	 < 1 indicates that the CG model is more efficient than
the DG model, and 	 > 1 indicates the DG model is more efficient. The mesh data and run
times are summarized in Table 2. As shown in Fig. 4, model run times scale close to linearly
with respect to the number of elements up to mesh h3 for the DG model and up to h4 for
the CG model. From h3 to h4, the DG model shows a slightly greater increase in run time
probably due to cache effects (a similar trend is observed with the CG model run times in
going from h4 to a mesh that is a uniform refinement of h4). As expected, the DG model
takes, on average, approximately 4 times (4.06×) longer to run than the CG model.

Before comparing the errors and convergence rates of the two models for this series of
problems, we remark on the performance of the CG model with respect to the selection

324 J Sci Comput (2009) 40: 315–339

of the GWCE weighting factor τ0. Following the general guideline mentioned in Sect. 2.2,
we initially take τ0 equal to the linear friction factor, i.e. τ0 = 0.0001. Using this value,
errors in the surface elevation initially increase in refining from mesh h1 to mesh h2; see
Table 3. Beyond mesh h2, the surface elevation solutions begin to converge slowly with
mesh refinement, but at best only first-order in the L1 and L∞ error norms (this is also
the case for the velocity solutions). By increasing τ0 by an order of magnitude, the error in
surface elevation for mesh h1 increases slightly from what was previously obtained, however
convergence is now observed with all further mesh refinements albeit at less than optimal
rates—again only around first-order in both surface elevation and velocity in refining from
mesh h3 to h4. By increasing τ0 again by an order of magnitude (τ0 = 0.01 now), nearly
optimal convergence rates are finally observed in the L1 and L∞ error norms for the surface
elevation and in L1 for the velocity solutions. The first-order convergence observed for the
velocity solutions in L∞ may be due to the way the open ocean boundary condition is
enforced as the maximum element errors consistently occur in elements near this boundary.
We remark that the improved performance of the models observed by increasing τ0 (up to
a point) is consistent with previous observations made relating τ0 to local mass errors, i.e.,
local mass errors, which are an indicator of local solution errors, generally decrease when
τ0 is increased; see [15].

Having established a suitable value for τ0, we now compare the errors and convergence
rates of the CG and DG models. The results for the three bathymetric profiles are summa-
rized in Tables 4, 5 and 6. It can be observed that error levels for both of the models are
relatively small at these levels of resolution, however the DG errors are consistently lower
than the CG errors, generally by an order of magnitude. Additionally, optimal second-order
convergence is observed for the DG surface elevation and velocity solutions in both L1 and
L∞ for the three test cases. However, as noted above, the CG solutions only exhibit first-
order convergence rates in L∞ for the velocity. The remaining CG convergence rates are
near optimal, although there does appear to be a slight degradation in the convergence rates
with the introduction of spatially varying bathymetry, e.g. CG convergence rates for the sur-
face elevation in L1 for refinement from h3 to h4 are 1.91, 1.86, and 1.77 for the n = 0, 1,
and 2 bathymetry test cases, respectively.

Although the errors for both of the models are quite low at these levels of resolution,
one can still do a simple cost versus accuracy analysis using the above data. For example,
for the n = 0 test case, the CG L∞ errors in surface elevation as a function of h can be
approximated by:

E(h)CG ≈ e1.92 logh−22.85. (3.3)

Similarly, the CG run times as a function of h can be estimated by the relation:

T (h)CG ≈ e−1.76 logh+20.38. (3.4)

Using the first relationship, the mesh spacing h required for the CG solution to achieve
the same level of error as the h1 = 7500 mesh DG solution is h ≈ 3000; see Fig. 5. Using
(3.4), this gives an estimated CG run time of TCG ≈ 556; see Fig. 5. Thus, the CG model
would take about 1.5 times longer than the DG model to achieve the same level of error in
the surface elevation for this test case. Indeed, a simple numerical test verifies this estimate
where a mesh with h = 3000 gives an error in surface elevation of 5.7810×10−4 (compare to
the h1 L∞ DG error of Table 4 and takes 1.6 times longer to run than the h1 DG simulation.
Estimates of the CG run times required to achieve the DG error levels of the first two meshes
are computed in a similar manner and are summarized in Table 7. It can be seen that in the

J Sci Comput (2009) 40: 315–339 325

Ta
bl

e
3

A
D

C
IR

C
-C

G
er

ro
rs

an
d

co
nv

er
ge

nc
e

ra
te

s
as

a
fu

nc
tio

n
of

τ 0

A
D

C
IR

C
-C

G

τ 0
M

es
h

L
∞

E
rr

or
C

on
v.

ra
te

L
1

E
rr

or
C

on
v.

ra
te

ξ
u

ξ
u

ξ
u

ξ
u

10
−4

h
1

1.
91

17
×

10
−3

5.
08

51
×

10
−2

–
–

9.
09

82
×

10
−4

1.
09

31
×

10
−2

–
–

h
2

2.
48

85
×

10
−3

2.
50

71
×

10
−2

−0
.3

80
4

1.
02

03
1.

27
62

×
10

−3
4.

36
24

×
10

−2
−0

.4
88

3
1.

32
52

h
3

1.
88

01
×

10
−3

1.
21

50
×

10
−2

0.
40

45
1.

04
51

1.
17

90
×

10
−3

2.
00

87
×

10
−3

0.
11

43
1.

11
88

h
4

9.
09

46
×

10
−4

6.
10

10
×

10
−3

1.
04

77
0.

99
38

5.
95

31
×

10
−4

8.
92

21
×

10
−4

0.
98

59
1.

17
08

10
−3

h
1

3.
40

74
×

10
−3

2.
25

68
×

10
−2

–
–

1.
42

22
×

10
−3

2.
69

22
×

10
−3

–
–

h
2

8.
41

69
×

10
−4

1.
21

62
×

10
−2

2.
01

73
0.

89
19

4.
00

96
×

10
−4

9.
95

30
×

10
−4

1.
82

66
1.

43
56

h
3

2.
83

25
×

10
−4

6.
35

33
×

10
−3

1.
57

12
0.

93
68

1.
58

65
×

10
−4

3.
99

03
×

10
−4

1.
33

76
1.

31
86

h
4

1.
30

95
×

10
−4

3.
19

56
×

10
−3

1.
11

30
0.

99
14

6.
90

34
×

10
−5

1.
55

15
×

10
−4

1.
20

04
1.

36
29

10
−2

h
1

3.
41

79
×

10
−3

1.
72

95
×

10
−2

–
–

1.
31

92
×

10
−3

2.
44

00
×

10
−3

–
–

h
2

8.
90

72
×

10
−4

9.
39

77
×

10
−3

1.
94

01
0.

87
99

3.
25

99
×

10
−4

7.
68

39
×

10
−4

2.
01

68
1.

66
70

h
3

2.
33

66
×

10
−4

4.
82

97
×

10
−3

1.
93

06
0.

96
04

8.
23

12
×

10
−5

2.
23

28
×

10
−4

1.
98

56
1.

78
30

h
4

6.
27

35
×

10
−5

2.
43

56
×

10
−3

1.
89

70
0.

98
77

2.
18

82
×

10
−5

6.
32

05
×

10
−5

1.
91

14
1.

82
08

326 J Sci Comput (2009) 40: 315–339

Ta
bl

e
4

A
D

C
IR

C
-C

G
an

d
A

D
C

IR
C

-D
G

er
ro

rs
an

d
co

nv
er

ge
nc

e
ra

te
s

fo
r

th
e

fla
tb

at
hy

m
et

ry
(n

=
0)

ca
se

A
D

C
IR

C
-C

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

0
h

1
3.

41
79

×
10

−3
1.

72
95

×
10

−2
−

−
1.

31
92

×
10

−3
2.

44
00

×
10

−3
−

−
h

2
8.

90
72

×
10

−4
9.

39
77

×
10

−3
1.

94
01

0.
87

99
3.

25
99

×
10

−4
7.

68
39

×
10

−4
2.

01
68

1.
66

70

h
3

2.
33

66
×

10
−4

4.
82

97
×

10
−3

1.
93

06
0.

96
04

8.
23

12
×

10
−5

2.
23

28
×

10
−4

1.
98

56
1.

78
30

h
4

6.
27

35
×

10
−5

2.
43

56
×

10
−3

1.
89

70
0.

98
77

2.
18

82
×

10
−5

6.
32

05
×

10
−5

1.
91

14
1.

82
08

A
D

C
IR

C
-D

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

0
h

1
5.

71
85

×
10

−4
1.

82
90

×
10

−3
−

−
3.

82
73

×
10

−4
1.

07
95

×
10

−3
−

−
h

2
1.

33
46

×
10

−4
4.

62
62

×
10

−4
2.

08
85

1.
98

31
9.

87
98

×
10

−5
2.

71
08

×
10

−4
1.

95
38

1.
99

35

h
3

3.
27

27
×

10
−5

1.
16

18
×

10
−4

2.
03

86
1.

99
35

2.
50

64
×

10
−5

6.
78

69
×

10
−5

1.
97

89
1.

99
79

h
4

8.
08

74
×

10
−6

2.
90

96
×

10
−5

2.
01

67
1.

99
74

6.
31

07
×

10
−6

1.
69

77
×

10
−5

1.
98

97
1.

99
92

J Sci Comput (2009) 40: 315–339 327

Ta
bl

e
5

A
D

C
IR

C
-C

G
an

d
A

D
C

IR
C

-D
G

er
ro

rs
an

d
co

nv
er

ge
nc

e
ra

te
s

fo
r

th
e

lin
ea

r
ba

th
ym

et
ry

(n
=

1)
ca

se

A
D

C
IR

C
-C

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

1
h

1
4.

65
05

×
10

−3
1.

02
66

×
10

−2
−

−
1.

31
56

×
10

−3
2.

00
20

×
10

−3
−

−
h

2
1.

35
60

×
10

−3
5.

93
61

×
10

−3
1.

77
80

0.
79

03
3.

40
63

×
10

−4
5.

91
92

×
10

−4
1.

94
94

1.
75

80

h
3

3.
89

05
×

10
−4

3.
25

24
×

10
−3

1.
80

13
0.

86
80

9.
00

02
×

10
−5

1.
66

88
×

10
−4

1.
92

02
1.

82
66

h
4

1.
11

53
×

10
−4

1.
77

24
×

10
−3

1.
80

25
0.

87
58

2.
47

96
×

10
−5

4.
58

22
×

10
−5

1.
85

98
1.

86
47

A
D

C
IR

C
-C

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

1
h

1
5.

69
73

×
10

−4
1.

22
10

×
10

−3
−

−
2.

97
15

×
10

−4
2.

62
01

×
10

−4
−

−
h

2
1.

50
28

×
10

−4
3.

43
53

×
10

−4
1.

92
26

1.
82

96
7.

54
56

×
10

−5
6.

64
28

×
10

−5
1.

97
75

1.
97

98

h
3

3.
85

91
×

10
−5

9.
11

31
×

10
−5

1.
96

13
1.

91
44

1.
90

03
×

10
−5

1.
67

25
×

10
−5

1.
98

94
1.

98
98

h
4

9.
78

33
×

10
−6

2.
34

70
×

10
−5

1.
97

99
1.

95
71

4.
77

04
×

10
−6

4.
19

49
×

10
−6

1.
99

40
1.

99
53

328 J Sci Comput (2009) 40: 315–339

Ta
bl

e
6

A
D

C
IR

C
-C

G
an

d
A

D
C

IR
C

-D
G

er
ro

rs
an

d
co

nv
er

ge
nc

e
ra

te
s

fo
r

th
e

qu
ad

ra
tic

ba
th

ym
et

ry
(n

=
2)

ca
se

A
D

C
IR

C
-C

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

2
h

1
3.

72
14

×
10

−3
1.

42
05

×
10

−2
−

−
6.

70
52

×
10

−4
2.

20
34

×
10

−3
−

−
h

2
1.

14
74

×
10

−3
7.

18
25

×
10

−3
1.

69
75

0.
98

38
1.

74
17

×
10

−4
6.

27
64

×
10

−4
1.

94
48

1.
81

17

h
3

3.
44

72
×

10
−4

4.
23

91
×

10
−3

1.
73

48
0.

76
07

4.
71

13
×

10
−5

1.
76

48
×

10
−4

1.
88

63
1.

83
04

h
4

1.
02

92
×

10
−4

2.
35

19
×

10
−3

1.
74

39
0.

84
99

1.
38

38
×

10
−5

4.
78

35
×

10
−5

1.
76

75
1.

88
34

A
D

C
IR

C
-C

G

B
at

h.
M

es
h

A
bs

ol
ut

e
L

∞
er

ro
r

C
on

v.
ra

te
A

bs
ol

ut
e

L
1

er
ro

r
C

on
v.

ra
te

Ty
pe

ξ
u

ξ
u

ξ
u

ξ
u

n
=

2
h

1
1.

32
39

×
10

−3
3.

07
08

×
10

−3
−

−
5.

00
31

×
10

−4
1.

01
83

×
10

−3
−

−
h

2
3.

47
49

×
10

−4
8.

56
56

×
10

−4
1.

92
97

1.
84

20
1.

24
70

×
10

−4
2.

55
06

×
10

−4
2.

00
43

1.
99

72

h
3

8.
90

44
×

10
−5

2.
26

47
×

10
−4

1.
96

44
1.

91
92

3.
11

03
×

10
−5

6.
37

96
×

10
−5

2.
00

34
1.

99
93

h
4

2.
25

39
×

10
−5

5.
82

38
×

10
−5

1.
98

21
1.

95
93

7.
76

63
×

10
−6

1.
59

54
×

10
−5

2.
00

18
1.

99
96

J Sci Comput (2009) 40: 315–339 329

Fig. 5 (a) CG and DG errors and (b) CG serial run times as a function of h

Table 7 Estimated ratio 	 of the
CG to DG run times required for
ADCIRC-CG to achieve errors
equivalent to the ADCIRC-DG

errors of the first two meshes

Bath. Mesh L∞ Error L1 Error

Type ξ u ξ u

n = 0 h1 1.50 19.94 0.87 0.68

h2 1.83 83.16 0.94 0.88

n = 1 h1 2.31 25.21 1.14 2.14

h2 2.75 113.12 1.30 2.61

n = 2 h1 0.85 6.39 0.38 0.62

h2 1.07 28.54 0.45 0.75

majority of cases the DG model is actually more efficient (> 1) than the CG model, in
terms of the amount of compute time it takes to achieve a specified error level. In particular,
it can be noted that the 	 factors of Table 7 related to the velocity errors in L∞ are very
large because the CG velocity solutions only exhibit first-order convergence in that case.

3.2 Parallel Performance

In this subsection, we investigate the parallel speedup, efficiency, and scalability of the two
codes. We begin with some preliminary definitions. The parallel speedup S is defined as the
ratio of the time of a single processor run Ts for a problem of fixed size over the time of a
parallel run Tp for a problem of the same size. The parallel efficiency E is defined as the
ratio of the speedup over the number of processors (cores).

For the parallel testing, we use the four meshes of the previous subsection along with
two successive, uniform refinements of mesh h4 denoted h5 and h6 (approximately 37,000
and 150,000 elements, respectively). We solve the n = 0 test case described in the previous
subsection—this time solving the full nonlinear equations. Two scenarios are investigated.
In the first, we fix the problem size, using mesh h6, and solve the problem on 1, 4, 16, 64,
256 and 1024 processors. In the second, we change the problem size while increasing the
number of processors such that the number of elements per processor remains (approxi-
mately) constant. This is investigated by solving mesh h1 on a single processor, mesh h2 on
4 processors, etc. Again, we test on up to 1024 processors.

330 J Sci Comput (2009) 40: 315–339

Table 8 Parallel speedup: Wall
clock times, parallel efficiency,
and DG to CG wall clock time
ratio for a fixed problem size

CPUs ADCIRC-CG ADCIRC-DG 	

Tp (s) E (%) Tp (s) E (%)

1 8913 · · · 37829 · · · 0.24

4 2428 90.65 13234 71.46 0.19

16 515 108.17 3040 77.77 0.17

64 246 56.61 675 87.57 0.36

256 178 19.56 204 72.44 0.87

1024 392 2.22 149 24.79 2.63

The results of the first scenario are summarized in Table 8 and Fig. 6. For a problem of
this size (again mesh h6 has approximately 150,000 elements), the ADCIRC-CG code shows
reasonably good parallel speedup and efficiency (>55%) on up to 64 processors. Beyond
this point, it shows significant drops in parallel efficiency—down to 20% and 2% for 256
and 1024 processors, respectively. Furthermore, in going from 256 to 1024 processors, the
parallel run times actually increase by a factor greater than 2 because message-passing has
now become the dominant factor of the run time.

On the other hand, ADCIRC-DG maintains close to linear speedup with efficiencies
greater than 70% on up to 256 processors; see Fig. 6. On 1024 processors, parallel effi-
ciency shows a significant drop; however, as opposed to the ADCIRC-CG code, a decrease in
actual compute time is still observed in going from 256 to 1024 processors. Of course, it is
important to point out that in terms of wall clock time, the ADCIRC-CG code is faster than
the ADCIRC-DG code on up to 256 processors for a problem of this size. However, with 1024
processors the DG code is more than 2.5 times faster. For smaller problems, this cross–over
point in efficiency is observed at a smaller number of processors, while for larger problems,
it is observed at a greater number of processors. Thus, for very large problem sizes, the
number of processors required before the DG code is more efficient, in terms of wall clock
time, than the CG code could be prohibitively large. We note that the problem size examined
here (≈150,000 elements) is a typical size used for many regional coastal ocean studies as
will be examined in the next section. Both models show improved parallel efficiency results
as problem size increases.

With respect to the parallel efficiencies, we note that the ADCIRC-CG code shows a jump
in parallel efficiency (exhibiting super linear speedup) in going from 4 to 16 processors. This
corresponds to going from approximately 36,000 elements to 9,000 elements per processor,
i.e. going from a mesh the size of h5 to a mesh the size of h4 on each processor. Similarly, the
ADCIRC-DG code exhibits a significant jump in efficiency in going from 16 to 64 processors
(mesh h4 to h3). These results, which are most likely due to cache effects, are consistent with
the observations made in the previous subsection for the serial run times (see the comments
to this effect in Sect. 3.1).

The results of the second scenario, where the problem size changes in proportion to
the number of processors such that each processor has approximately 150 elements, are
summarized in Table 9. With each case, the DG code shows greater parallel efficiency than
the CG code, with the differences in parallel efficiency becoming increasingly greater as
the number of processors increases—for example, with 64 processors the CG and DG codes
show parallel efficiencies of 8.38% and 48.28%, respectively. It can also be observed that the
DG code is more efficient in terms of wall clock time on 64, 256, and 1024 processors in this
case. These trends are due to fact that the overhead time associated with message passing for
the CG code grows at a greater rate than the DG code as the number of processors increases.

J Sci Comput (2009) 40: 315–339 331

Fig. 6 (Color online) (a) Parallel speedup, (b) efficiency, and (c) run times for ADCIRC-CG (red squares)
and ADCIRC-DG (blue circles)

332 J Sci Comput (2009) 40: 315–339

Fig. 6 (Continued)

Table 9 Parallel scaling: Wall
clock times, parallel efficiency,
and DG to CG wall clock time
ratio for problem size scaled with
number of processors

CPUs ADCIRC-CG ADCIRC-DG 	

Tp (s) E (%) Tp (s) E (%)

1 88 · · · 337 · · · 0.26

4 144 61.11 482 69.92 0.30

16 455 19.34 610 55.25 0.75

64 1050 8.38 698 48.28 1.50

256 1875 4.69 920 36.63 2.04

1024 4499 1.96 1385 24.33 3.25

This is because the CG code requires global communication among all processors to solve
the resulting system of equations, while the DG code only requires local communication
between neighboring subdomains.

3.3 Modeling Tides in Chesapeake Bay

With the final test case, we compare the two models on a full-scale application. The finite
element mesh that is used is shown in Fig. 7(a). The mesh covers a large portion of the
western north Atlantic with open ocean boundaries introduced at a longitude of 63◦ W and
a latitude of 28◦ N. The remaining boundaries along the east coast of the US and Canada
are treated as land or no-normal flow boundaries. The mesh has approximately 160,000
elements, around 95% of which are in the area of Chesapeake Bay, which will serve as

J Sci Comput (2009) 40: 315–339 333

Fig. 7 (a) Finite element mesh used for tidal simulations in Chesapeake Bay; (b) Closeup of the Chesapeake
Bay area showing bathymetric/topographic contours

the area of interest for our model comparison; see Fig. 7(b). Note that the use of such a
large scale unstructured mesh for this area, with open ocean boundaries set predominately
in the deep ocean, as opposed to closer to the area of interest, simplifies boundary condition
specification and mitigates a number of physical and numerical issues related to boundary
conditions with little additional computational overhead.

Located throughout the area of Chesapeake Bay, the National Ocean Service (NOS) has
several tidal data stations with harmonic constituent data, which generally consist of am-
plitude and phase data for 37 different tidal constituents; see [27]. Model tidal amplitudes
and phases for the O1, K1, Q1, M2, N2, S2, and K2 constituents—obtained by harmonically
analyzing the numerical solutions over a period of time—will be compared to NOS data at
10 different stations located throughout the area. The locations of these stations, along with
their corresponding NOS station identification numbers, are shown in Fig. 8.

As boundary conditions along the open ocean boundaries, tidal signals are constructed
using amplitudes and phases of the seven constituents mentioned above, which are obtained
from a tidal data base of the East Coast that was created using ADCIRC-CG; see [26]. Internal
tidal potential forcing is also included in the models using these same tidal constituents (this
forcing term is accounted for in the force term F of (2.2)). Simulations begin from initial
conditions of rest and the tidal forcing is applied gradually, building up to full amplitude over
a period of 5 days. Simulations that are run to obtain model tidal amplitudes and phases are
run for a period of 45 days on 256 processors. The surface elevation solutions at each of
the stations are harmonically analyzed using data every 300 s over the last 30 days of the
simulation. Simulations to obtain timings on 64, 256, and 1024 processors are only run for
a period of 5 days because of computational time restrictions on the parallel cluster.

Average amplitude and phase errors over the 10 stations shown in Fig. 8 are summarized
in Table 10 for each of the seven harmonic constituents listed above. Graphical displays

334 J Sci Comput (2009) 40: 315–339

Fig. 8 NOS station locations
used for tidal validation of the
models

Table 10 Average amplitude and phase errors for the Chesapeake Bay test case

Tidal constituent: K1 O1 M2 S2 N2 K2 Q1

ADCIRC-CG Amplitude (m) 0.0064 0.0066 0.0378 0.0103 0.0084 0.0119 0.0017

Phase (◦) 0.2049 0.8303 0.7432 0.1890 0.1244 1.3887 0.1972

ADCIRC-DG Amplitude (m) 0.0074 0.0085 0.0396 0.0074 0.0098 0.0115 0.0022

Phase (◦) 0.1935 0.9399 0.7524 0.1685 0.1263 1.5025 0.2539

of the NOS data compared to the ADCIRC-CG and ADCIRC-DG results are shown for 3
of these stations in Figs. 9 and 10, respectively (the tidal signals shown in these figures are
reconstructed from the seven harmonic constituents). As can be observed from these Figures
and Table 10, both of the models accurately reproduce the tides in this area (in some cases
the field data and computed results are indistinguishable graphically). The amplitude and
phase errors of the two models are very similar.

Wall clock times for simulations on 64, 256, and 1024 processors are reported in Ta-
ble 11. When using 64 processors (≈ 2500 elements/processor) the CG code is approxi-
mately 1.8 times faster than the DG code. However the DG code is more efficient in terms
of both parallel efficiency and run time when using 256 and 1024 processors—by factors of
1.9 and 9.0, respectively. We note that in this case, in contrast to the problem of the previ-
ous section, which was of similar size, the DG code is more efficient than the CG code in
terms of compute time on 256 processors. It was observed that this was due to the fact that
the solver used in ADCIRC-CG typically required a greater number of iterations (≈ 15 as
opposed to 7), and thus a greater number of global communications, for this problem than
the previous one.

J Sci Comput (2009) 40: 315–339 335

Fig. 9 (Color online) Comparison of field data (dashed red lines) and ADCIRC-CG results (solid blue lines)
for the time history of tidal signals and tidal amplitudes at three select stations

336 J Sci Comput (2009) 40: 315–339

Fig. 10 (Color online) Comparison of field data (dashed red lines) and ADCIRC-DG results (solid blue lines)
for the time history of tidal signals and tidal amplitudes at three select stations

J Sci Comput (2009) 40: 315–339 337

Table 11 Wall clock times and
efficiencies for 64, 256, and 1024
processors for Chesapeake Bay

CPUs ADCIRC-CG ADCIRC-DG 	

Tp (s) E (%) Tp (s) E (%)

64 13535 · · · 24967 · · · 0.54

256 14109 23.98 7318 85.29 1.93

1024 37709 2.24 4183 37.30 9.01

4 Discussion and Conclusions

In this paper, we have presented a detailed comparative study of two SWE finite element
models—a GWCE-based CG model and a recently developed DG model. The models were
compared on three sets of problems in terms of accuracy, convergence rates, serial and paral-
lel run times, and efficiency. While the DG model was observed to be less efficient in terms
of compute time on serial machines (generally by a factor of 4) because of the larger number
of degrees of freedom associated with the method, it was also observed that the CG solution
errors were greater than the corresponding DG solution errors—generally by an order of
magnitude. A simple cost versus accuracy analysis based on data obtained from a number of
runs demonstrated that the mesh spacing required by the CG model to achieve the same error
levels of the DG model for a given mesh typically resulted in a greater compute time than the
DG model. Additionally, the DG model consistently displayed better convergence rates than
the CG model. In terms of parallel performance, it was observed that the DG model gener-
ally showed greater parallel efficiency both for problems of fixed size and for problem sizes
that increased in proportion with the number of processors. However, for a problem size
of approximately 150,000 elements, the CG model was more efficient than the DG model
in terms of actual compute time on up to 256 processors. Results for problems of different
fixed sizes (not shown here) demonstrated that this crossover point in efficiency occurred at
a lower number of processors for smaller problems and a higher number of processors for
larger problems. Thus, which model would be more efficient for a given parallel simulation
ultimately depends on both the size of the problem and the computing resources one has
available. A full-scale application in the Chesapeake Bay area demonstrated that both mod-
els accurately reproduce the tides in that area and displayed very similar errors with the DG
model showing significantly better parallel efficiency and resulting in lower compute times
on both 256 and 1024 processors in that case.

Finally, we have limited our focus here to piecewise linear approximations over triangu-
lar elements for the DG model. It should be mentioned that for certain classes of problems
significant gains in efficiency can be gained using p-refinement for DG methods as demon-
strated in [17]. The DG parallelization strategy described here can also be used without
change for higher-order DG methods due to the fact that the size of the element stencil does
not change for a given order. Additionally, using a combination of triangular and quadri-
lateral elements in the DG model, which can be implemented with relative ease due to the
fact that C0 continuity is not required across element edges, could make the DG model
even more efficient than the CG model given that the element to node ratio would go down
with the introduction of quadrilateral elements. Lastly, in future work we will investigate the
performance of CG and DG models for full three-dimensional simulations.

Acknowledgements This work was supported by National Science Foundation grants OCI-0746232 and
OCI-0749015 and by the Office of Naval Research, Award Number: N00014-06-1-0285.

338 J Sci Comput (2009) 40: 315–339

References

1. Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in
shallow water. Adv. Water Resour. 25, 67–84 (2002)

2. Atkinson, J.H., Westerink, J.J., Luettich, R.A.: Two-dimensional dispersion analyses of finite element
approximations to the shallow water equations. Int. J. Numer. Methods Fluids 45, 715–749 (2004)

3. Bey, K.S., Patra, A., Oden, J.T.: hp-version discontinuous Galerkin methods for hyperbolic conservation
laws—a parallel adaptive strategy. Int. J. Numer. Methods Eng. 38, 3889–3908 (1995)

4. Biswas, R., Devine, K.D., Flaherty, J.E.: Parallel, adaptive finite element methods for conservation laws.
Appl. Numer. Math. 14, 255–283 (1994)

5. Blain, C.A., Massey, T.C.: Application of a coupled discontinuous–continuous Galerkin finite element
shallow water model to coastal ocean dynamics. Ocean Model. 10, 283–315 (2005)

6. Buffa, A., Hughes, T.J.R., Sangalli, G.: Analysis of a multiscale discontinuous galerkin method for
convection-diffusion problems. SIAM J. Numer. Anal. 44, 1420–1440 (2006)

7. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput.
Methods Appl. Mech. Eng. 193, 2565–2580 (2004)

8. Dawson, C., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, discontinuous and coupled
discontinuous–continuous Galerkin finite element methods for the shallow water equations. Int. J. Nu-
mer. Methods Fluids 52, 63–88 (2006)

9. Eskilsson, C., Sherwin, S.J.: A triangular spectral/hp discontinuous Galerkin method for modelling 2D
shallow water equations. Int. J. Numer. Methods Fluids 45, 605–623 (2004)

10. Foreman, M.G.G.: A comparison of tidal models for the southwest coast of Vancouver Island. In: Celia,
M. (ed.) Computational Methods in Water Resources: Proceedings of the VII International Conference.
Elsevier, Amsterdam (1988)

11. Gray, W.G.: A finite element study of tidal flow data for the North Sea and English Channel. Adv. Water
Resour. 12, 143–154 (1989)

12. Gray, W.G., Lynch, D.R.: Time–stepping schemes for finite element tidal model computations. Adv.
Water Resour. 1, 83–95 (1977)

13. Hughes, T.J.R., Scovazzi, G., Bochev, P.B., Buffa, A.: A multiscale discontinuous Galerkin method with
the computational structure of a continuous Galerkin method. Comput. Methods Appl. Mech. Eng. 195,
2761–2787 (2006)

14. Kinnmark, I.P.E.: The Shallow Water Wave Equations: Formulations, Analysis and Application. Lecture
Notes in Engineering, vol. 15. Springer, Berlin (1986)

15. Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow-
water models based on the wave continuity equation. Comput. Fluids 23, 523–528 (1994)

16. Kolar, R.L., Gray, W.G., Westerink, J.J.: Boundary conditions in shallow water models–an alternative
implementation for finite element codes. Int. J. Numer. Methods Fluids 22, 603–618 (1996)

17. Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous Galerkin methods for advection dominated
problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196, 437–451 (2006)

18. Karypis, G., Kumar, V.: METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning
Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. University of Minnesota Depart-
ment of Computer Science/Army HPC Research Center, Minneapolis (1998)

19. Le Provost, C., Vincent, P.: Finite element for modeling ocean tides. In: Parker, B. (ed.) Tidal Hydrody-
namics, pp. 41–60. Wiley, New York (1991)

20. Le Roux, D.Y., Lin, C.A., Staniforth, A.: A semi-implicit semi-Lagrangian finite-element shallow-water
ocean model. Mon. Weather Rev. 128, 1384–1401 (2000)

21. Li, H., Liu, R.: The discontinuous Galerkin finite element method for the 2D shallow water equations.
Math. Comput. Simul. 56, 223–233 (2001)

22. Luettich, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: An advanced three-dimensional circulation
model for shelves, coasts and estuaries, Report 1: Theory and methodology of ADCIRC-2DDI and
ADCIRC-3DL. In: Dredging Research Program Technical Report DRP-92-6, US Army Engineers Wa-
terways Experiment Station, Vicksburg, MS (1992)

23. Lynch, D.R., Gray, W.G.: Analytic solutions for computer flow model testing. J. Hydraul. Div. 104,
1409–1428 (1978)

24. Lynch, D.R., Gray, W.G.: A wave equation model for finite element tidal computations. Comput. Fluids
7, 207–228 (1979)

25. Lynch, D.R., Werner, F.E., Molines, J.M., Fornerino, M.: Tidal dynamics in a coupled ocean/lake system.
Estuar. Coast. Shelf Sci. 31, 319–343 (1990)

26. Mukai, A.Y., Westerink, J.J., Luettich, R.A., Mark, D.: Eastcoast 2001, a tidal constituent database for
Western North Atlantic, Gulf of Mexico, and Caribbean Sea. TR ERDC 01-x, US Army Engineer, Engi-
neer Research and Development Center, Vicksburg, MS (2001)

J Sci Comput (2009) 40: 315–339 339

27. National Oceanic and Atmospheric Administration: Tides and currents database. Online, available:
http://tidesandcurrents.noaa.gov/

28. Schwanenberg, D., Kiem, R., Kongeter, J.: Discontinuous Galerkin method for the shallow water equa-
tions. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods, pp. 289–
309. Springer, Heidelberg (2000)

29. Walters, R.A.: A model for tides and currents in the English Channel and southern North Sea. Adv. Water
Resour. 10, 138–148 (1987)

30. Werner, F.E., Lynch, D.R.: Harmonic structure of English Channel/Southern Bight tides from a wave
equation simulation. Adv. Water Resour. 12, 121–142 (1989)

31. Westerink, J.J., Luettich, R.A., Baptista, A.M., Scheffner, N.W., Farrar, P.: Tide and storm surge pre-
dictions in the Gulf of Mexico using a wave-continuity equation finite element model. In: Spaulding,
M.L. (ed.) Estuarine and Coastal Modeling: Proceedings of the 2nd International Conference. American
Society of Civil Engineers, New York (1992)

http://tidesandcurrents.noaa.gov/

	A Performance Comparison of Continuous and Discontinuous Finite Element Shallow Water Models
	Abstract
	Introduction
	CG and DG Model Summaries
	Governing Equations
	ADCIRC-CG Methodology
	ADCIRC-DG Methodology
	Parallelization

	Numerical Tests
	Accuracy, Convergence, and Serial Run Times
	Parallel Performance
	Modeling Tides in Chesapeake Bay

	Discussion and Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

