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a b s t r a c t

The shallow water equations are used to model large-scale surface flow in the ocean, coastal rivers, estu-
aries, salt marshes, bays, and channels. They can describe tidal flows as well as storm surges associated
with extreme storm events, such as hurricanes. The resulting currents can transport bed load and sus-
pended sediment and result in morphological changes to the seabed. Modeling these processes requires
tightly coupling a bed morphology equation to the shallow water equations. Discontinuous Galerkin
finite element methods are a natural choice for modeling this coupled system, given the need to solve
these problems on unstructured computational meshes, as well as the desire to implement hp-adaptivity
for capturing the dynamic features of the solution. However, because of the presence of non-conservative
products in the momentum equations, the standard DG method cannot be applied in a straightforward
manner. To rectify this situation, we summarize and follow an extended approach described by Rheber-
gen et al., which uses theoretical results due to Dal Maso et al. appearing in earlier work. In this paper, we
focus on aspects of the implementation of the morphological model for bed evolution within the
Advanced Circulation (ADCIRC) modeling framework, as well as the verification of the RKDG method
in both h (mesh spacing) and p (polynomial order). This morphological model is applied to a number
of coastal engineering problems, and numerical results are presented, with attention paid to the effects
of h- and p-refinement in these applications. In particular, it is observed that for sediment transport,
piecewise constant (i.e., finite volume) approximations of the bed are very over-diffusive and lead to poor
sediment solutions.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The modeling of flow and transport in coastal waters requires a
detailed knowledge of winds, waves, currents, sediment transport
and ultimately, the resulting morphological changes in the seabed
that occur as a result of these processes. The erosion and deposition
of bed sediment can have a major detrimental impact on the coastal
population, infrastructure, and environment. For example, the US
Army Corps of Engineers (USACE) maintains more than 12,000
miles of waterways for transportation, which carry approximately
one-sixth of the US inter-city freight [1]. Maintenance of these
waterways through dredging and backfilling operations represents
a significant cost to the USACE as well as other agencies and indus-
tries. As another example, the structural integrity of bridges, levees,
ll rights reserved.
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and piers can be compromised by excessive scour of the seabed
around the structure. Also, dune, barrier island, and channel erosion
during a hurricane leads to the removal of major flow controls,
which significantly affects inland inundation. In addition to these
infrastructure-related issues, there exists a host of environmental
concerns, such as beach erosion and the transport of contaminants
with sediment, which may actually act as a source or sink for con-
taminants depending on the surrounding physico-chemical condi-
tions [2].

Collectively, the various fluid flow and transport processes that
lead to morphological changes in the seabed form an interdepen-
dent physical system in which the fluid motion, due to both waves
and currents, drives the transport of sediment, which dictates the
morphological evolution of the seabed. In turn, the fluid motion it-
self is then directly affected by the morphological changes in the
bed that it induces. Comprehensive modeling of these processes
in the coastal zone presents several challenges and open questions.
Most existing hydrodynamic models use a fixed-bed approach;
that is, the bottom boundary of the seabed is not allowed to evolve
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Fig. 1. The seawater column, showing the relationship between H, f, and b.
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in response to the fluid motion. With respect to movable-bed mod-
els, there is no single, generally accepted mathematical model that
is used, with descriptions of the fluid-bed interface region varying
from simple single interface models to more complex three-phase
approaches that consist of fluid, fluid-sediment, and sediment
phases; see, for example, [3]. Once an appropriate mathematical
model is formulated, there exists the numerical challenge of cou-
pling models of various processes that exhibit disparate time
scales—both within the fluid motion itself and between the fluid
and bed motion. The evolution of the bed is typically on a much
slower time scale compared to even the slowest time scale of the
fluid motion; a situation where this may not be the case is during
an extreme event, such as a hurricane.

In this paper, we focus on the coupling of shallow water hydro-
dynamics with sediment transport described as bed load, and the
application of an hp Runge–Kutta discontinuous Galerkin (RKDG)
approximation to this coupled system. The mathematical model
we consider consists of the depth-averaged (two-dimensional)
shallow water equations and the well-known Exner equation [4],
which describes the bed morphology. The models are coupled in
the sense that the sediment flux depends on the current, while
the transport of sediment induces dynamic bathymetry, which af-
fects the water depth. In addition, the fact that bathymetry is now
an unknown in the model rather than a known fixed quantity gives
rise to a non-conservative product in the shallow water momen-
tum equations, which requires special treatment.

The RKDG method is an extension of finite volume methods
which allows for arbitrary order of approximation in space and is
applicable to general unstructured meshes. A number of research-
ers have studied finite volume methods for circulation/sediment
transport/bed morphology models of various levels of complexity,
in one and two space dimensions; see for example [3,5–12]. These
papers shed light on approaches for coupling the equations in both
space and time, including the development of numerical fluxes
appropriate for DG discretizations.

Recently, Tassi et al. [13] have examined river bed evolution in
shallow water flow using the RKDG method. The DG spatial dis-
cretization that is used is an extended approach developed by Rhe-
bergen et al. [14] to handle the non-conservative product that is
introduced when coupling the Exner equation to the shallow water
equations. We follow this approach here, but focus on the verifica-
tion of the RKDG method in both h (mesh spacing) and p (polyno-
mial order), and on the application of the model to a number of
coastal engineering problems, again emphasizing the effects of h-
and p-refinement in these examples.

The work described herein is the latest in a series of papers by the
authors and collaborators on the application of discontinuous
Galerkin (DG) methods to shallow water flows [15–22]. The RKDG
method has been implemented within the general Advanced Circu-
lation (ADCIRC) modeling framework, which is a parallel simulator
for shallow water flow and transport coupled with wind, wind-
waves and other external forcings. The operational ADCIRC model,
which is based on a continuous Galerkin method applied to the
so-called Generalized Wave Continuity Equation (GWCE), has been
used to study a variety of coastal engineering applications, including
storm surges generated by hurricanes and tropical storms [23,24].
The coupling of the GWCE-based formulation with a DG method
for bed morphology has been studied by the authors in [25]; how-
ever, this coupling suffers from the fact that the GWCE method does
not produce locally conservative currents, which can lead to spuri-
ous sediment transport solutions. One of the immediate goals of our
research is the development of a DG-based hydrodynamic storm
surge model coupled to sediment transport, for modeling scour
due to strong currents during extreme storm events.

The remainder of this paper is outlined as follows. In Section 2
we present the governing equations for hydrodynamics and bed
morphology. As mentioned above, the presence of dynamic
bathymetry gives rise to a non-conservative product in the formu-
lation. The analysis of such models is due to Dal Maso et al. [26],
and we summarize their theoretical results. This formulation is
the basis of the RKDG method as originally presented by Rheber-
gen et al. [14]. This formulation is described in Section 3 along with
some details of the implementation. In Section 4, several numerical
studies are presented. These studies begin by highlighting the con-
vergence of the method in both h and p for a problem with an ana-
lytical solution. We then focus on a number of coastal engineering
applications, including flow through a converging channel, scour-
ing around a bridge pier, and ebb and flood shoal formation in an
inlet. In each application, we study the effects of h- and/or p-refine-
ment within the RKDG formulation. We conclude in Section 4.5
with some remarks on parallel performance.

2. Model description

2.1. Governing equations

The governing equations for hydrodynamics are derived by
integrating the Navier–Stokes equations with kinematic boundary
conditions over depth, assuming a hydrostatic pressure distribu-
tion as well as a uniform velocity profile in the vertical, and ignor-
ing the effects of diffusion. The following system of equations are
obtained:

@tH þr � q ¼ 0; ð1aÞ
@tqþr � Fmom � gHrb ¼ smom; ð1bÞ

which, taken together, are known as the Saint–Venant or shallow
water equations (SWE), which are defined on the domain X � (0,T]
with appropriate initial and boundary conditions specified.

In (1a) and (1b), H = f + b is the total depth of the seawater col-
umn, where f is the observed free surface elevation measured po-
sitive upward from a specified horizontal datum and b is the
bathymetric depth measured positive downward from the datum,
as shown in Fig. 1. The vector q = (Hu,Hv)T is the discharge rate,
where u and v are the depth-averaged velocities in the x- and y-
directions, respectively. The symmetric tensor

Fmom ¼
Hu2 þ 1

2 gH2 Huv
Huv Hv2 þ 1

2 gH2

 !
;

where the constant g = 9.80665 m/s2 is standard gravity, and smom

represents terms such as bottom friction, turbulent eddy viscosity,
and additional surface forces from the Coriolis force and tide-gener-
ating potential as well as surface stresses caused by wind, variable
atmospheric pressure, and radiation stresses from short wind-driven
waves. Note that H and q are both functions of time t as well as space.
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In addition, sediment mass balance within the water column is
considered. Under the assumptions of constant porosity e0 and
ignoring the effects of diffusion, the following sediment transport
equation arises:

@b
@t
� 1

1� e0
r � qb ¼ 0; ð2Þ

where qb is the total sediment transport rate. This is an empirically
defined function of H, kuk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

, and several other variables;
see, for example, [27]. In the numerical results presented in this pa-
per, only bed load transport due to currents is considered, and qb is
a taken as a function of kuk3

2 except where otherwise noted.
For the purposes of this paper, the coupled system consisting of

Eqs. (1a), (1b), and (2) will be expressed as

@twþr � Fþ Grw� s ¼ 0; ð3Þ

where w = (H,Hu,Hv,b)T, F ¼ q j Fmom j qbð ÞT ;Grw ¼ ð0;�gH@xb;
�gH@yb; 0ÞT where G is a third-order tensor, and s = (0,smom

T,0)T.

2.2. Treatment of discontinuous bathymetry

In its present form, the coupled system (3) presents several
challenges when attempting to resolve all components of w simul-
taneously. This is partly rooted in the fact that transport of sedi-
ment is a non-passive quantity; two-way coupling results since
changes in bathymetry directly affect both the elevation and flow
rate and vice versa. The more serious issue, however, is the pres-
ence of the non-conservative products �gH@xb and �gH@yb in the
momentum Eq. (1b). Since the quantity �gH cannot be expressed
as the Jacobian of some tensor Q, the hyperbolic system (3) cannot
be written in so-called divergence form:

@twþr � Q ¼ 0: ð4Þ

The problem becomes particularly acute when b is discontinuous,
which frequently occurs in many ocean, riverine, and estuarine sys-
tems. This is because weak solutions to (3) do not exist in this case;
the distributional derivatives are not defined at the discontinuities
[14]. As a result, traditional discontinuous Galerkin (DG) methods
cannot be applied to this system in a straightforward manner.

There are three options available to treat this shortcoming. The
first is to use the fully non-conservative form of (3). Indeed, by con-
sidering the fully non-conservative form of the coupled system in
one space dimension, adjusted characteristic speeds may be
extracted and incorporated into the definition of, for example,
the Local Lax–Friedrichs (LLF) numerical flux, and the system
may then be expressed in divergence form. However, in two space
dimensions, this approach fails. Moreover, this option is not very
attractive from a numerical point of view, since the numerical
method may then possibly converge to non-physical (i.e. non-
entropy-preserving) solutions [16].

The second choice involves uncoupling the sediment transport
Eq. (2) from the SWE (1a) and (1b), at least to some degree. Based
on physical arguments involving typical time scales for sediment
and seawater transport rates, this approach was previously taken
in our model implementation [16]. The principal drawback to this
approach is its lack of accuracy during instances when the time
scales for transport of sediment and seawater become similar, such
as during the extreme events ultimately desired to simulate.

The remaining option is to formulate a special treatment for the
non-conservative products. This was done in previous work for
one-dimensional problems in [28] and for two-phase flow prob-
lems in [29]. An alternative treatment was proposed by Dal Maso
et al. [26] and applied by Rhebergen et al. to one- and two-dimen-
sional problems using the DG method with piecewise linear finite
element basis functions in [14]. It is this treatment that will be em-
ployed here.
The idea proposed by Dal Maso et al. is to regularize the solution
w near discontinuities by connecting the interior and exterior
traces w(in) and w(ex) (assuming these are well-defined) with a
smooth path function / : ½0;1� ! R4 parameterized by s 2 [0,1].
This path / must satisfy the following properties:

1. [End conditions] /(0) = w(in) and /(1) = w(ex),
2. [Consistency] If w(in) = w(ex), then /(s) = w(in),

3. [Lipschitz] For each component /k of /, $M > 0 such that
@/k

@s

���� ���� 6 M wðinÞk �wðexÞ
k

��� ���

for a.e. s 2 [0,1], and
4. [Symmetry] In two or more space dimensions,
/ s; wðinÞ;wðexÞ� �
¼ / 1� s; wðexÞ;wðinÞ

� �
:

Condition (4) states that the path must be symmetric with
respect to an interchange of the traces. This condition need not
be satisfied for one-dimensional problems [14,26].

Defining the third-order tensor T as

T ¼ @wFþ G; ð5Þ

Eq. (3) may be rewritten as

@twþ T rw� s ¼ 0: ð6Þ

With the coupled system expressed by (6) in this non-conservative
form, we may state the following theorem, due to Dal Maso et al.
[26], on the integration of non-conservative products, which are
treated as a bounded Borel measure:

Theorem 1. Assume that

1. The function w is bounded on its domain X,
2. The function w is of bounded variation on X,
3. Each entry of T is a locally bounded, measurable function that

maps Borel sets to Borel sets, and
4. The domain X = XC [XJ [XI with each subset disjoint, where XC

is the set where w is almost everywhere continuous, XJ is the set of
jumps in w, and XI is the set of ‘‘irregular” points (an example of
which is given in Section 3.1).

Then there exists a unique, bounded vector of Borel measures
l : X! R4 such that

1. If B is a Borel subset of XC, then
lðBÞ ¼
Z

B
T rwdk;
where k is the Borel measure,
2. If B is a Borel subset of XJ, then
lðBÞ ¼
Z

B\XJ

Z 1

0
T ð/Þ @/

@s
ds

� �
ndH2

;

where n is the unit vector normal to B directed toward the region
where s = 1 (where w = w(ex)), H2 is the two-dimensional Hausdorff
measure, and
3. If B is a Borel subset of XI, then
lðBÞ ¼ 0:
Consult [26] for the proof. The second assumption is necessary
since it guarantees that w(in) and w(ex) are well-defined, and also
ensures that w admits only jump-type discontinuities on X.
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3. Finite element discretization

3.1. DG formulation

In this section, we derive the DG formulation of (6). We begin by
defining appropriate finite element function spaces to be used in
the model. Next, we construct an unstructured finite element mesh
or grid from X. Then we apply Theorem 1 to integrate the non-con-
servative product in (6) over the mesh. Finally, we describe the
numerical flux to be used on element boundaries.

Let Xh = [eXe be a finite element partition of X into a set of non-
overlapping triangular elements Xe. The solution w is approxi-
mated in Xh by wh residing in the finite element space

Wh ¼ ½L1ð0; T; VhÞ�4;

where

Vh ¼ fv 2 BVðXhÞ : v jXe
2 PpðXeÞ 8Xe 2 Xhg;

where BV(Xh) denotes the space of functions of bounded variation
on Xh (required for Theorem 1), and PpðXeÞ denotes the space of
polynomials of order p on the element Xe. In this paper, we assume
p is constant over the domain; see [16,20] for commentary on
implementing p-adaptivity.

The semi-discrete weak formulation of the coupled system is
derived following the approach discussed in [13,14]. Multiplying
Eq. (6) by a test function vh 2Wh and integrating over Xh gives

ð@twh;vhÞL2ðXhÞ þ
Z

Xh

vh � dl� ðsh;vhÞL2ðXhÞ ¼ 0; ð7Þ

where Theorem 1 implies that

dl ¼

T hrwhdXC
h on XC

h ;R 1
0 T hð/Þ @/@s ds

� 	
ndXJ

h on XJ
h;

0 on XI
h:

8>><>>: ð8Þ

In this context, XC
h represents the interiors of all elements Xe; XJ

h,
the set of all element boundaries oXe; XI

h, the set of all nodal
points—a set of Borel measure zero.

With dl defined by Eq. (8), Eq. (7) becomes

0 ¼
X

e

@twh þ T hrwh � sh;vhð ÞL2ðXeÞ

þ
X

eI

Z 1

0
T hð/Þ

@/

@s
ds

� �
n;vh


 �
L2ðceI

Þ
;

where the terms are now written element-wise, and ceI
denotes an

interior edge. Splitting T h using Eq. (5) results in

0 ¼
X

e

@twh þr � Fh þ Ghrwh � sh;vhð ÞL2ðXeÞ

þ
X

eI

Z 1

0
Ghð/Þ

@/

@s
ds

� �
n;vh


 �
L2ðceI

Þ
: ð9Þ

Since the test function vh is double-valued on element bound-
aries, an appropriate numerical flux v̂h must be chosen. This
numerical flux is chosen in [14] such that the DG formulation with
non-conservative products reduces to the conservative DG formu-
lation whenever Gh is the Jacobian of some tensor Qh. To this end,
Rhebergen et al. [14] prove that

v̂h ¼ ffvhgg ¼
vðinÞh þ vðexÞ

h

2

satisfies this requirement. Thus, vh may be replaced with {{vh}} in
the boundary integrals of Eq. (9), and the divergence term in the
element interior integral may be integrated by parts to obtain
0¼
X

e

ð@twh þGhrwh � sh;vhÞL2ðXeÞ �
X

e

ðFh;rvhÞL2ðXeÞ

þ
X

eI

f̂nc; svht
D E

L2ðceI
Þ
þ
X

eI

Z 1

0
Ghð/Þ

@/

@s
ds

� �
n;ffvhgg


 �
L2ðceI

Þ

þ
X

eB

f̂nc;v
ðinÞ
h

D E
L2ðceB

Þ
; ð10Þ

where ceB
represents a boundary edge, s �t = (�)(in) � (�)(ex) represents

the so-called jump operator, and f̂nc is a numerical flux to be defined
later.

The derivation thus far has been independent of the exact form
of the path /. However, with wh regularized near the element
boundaries in this manner, the value of the regularized non-con-
servative product, and hence the value of the path integral, is ulti-
mately dependent in the limit on the choice of path (see, for
example, [14] or [26]). As a consequence, Eq. (10) cannot be further
simplified until a suitable form of / is chosen. Rhebergen et al. in
[14] investigated the effect on numerical solutions for polynomial
paths of various orders, as well as those chosen by Toumi in [30].
They found that the effect on the numerical solution is small,
and that having a good numerical integration scheme to integrate
the path integral appears to be of greater importance [14]. With
this result in mind, a linear path will be used in the implementa-
tion and in all results presented in this paper:

/ðsÞ ¼ wðinÞh þ s wðexÞ
h �wðinÞh

� 	
:

This choice of path allows for easy evaluation of the path integral:
Define

vnc ¼
Z 1

0
Ghð/Þ

@/

@s
ds

� �
n ¼

0
gffHhggsbhtnx

gffHhggsbhtny

0

0BBB@
1CCCA:

Eq. (10) can then be rewritten as

0 ¼
X

e

ð@twh þ Ghrwh � sh;vhÞL2ðXeÞ �
X

e

ðFh;rvhÞL2ðXeÞ

þ
X

eI

f̂nc; svht
D E

L2ðceI
Þ
þ vnc; ffvhggh iL2ðceI

Þ

� 
þ
X

eB

f̂nc;v
ðinÞ
h

D E
L2ðceB

Þ
:

To finalize the derivation, it remains to define an appropriate
(stable) numerical flux and merge the boundary integrals. As dis-
cussed in [14], the form of this flux may be thought of as a sum
of an average term of Fh, a stabilizing viscous term involving swht,
and an additional stabilizing term involving vnc, the value of the
path integral. We define

f̂nc ¼ f̂T
nc;hydro; f̂ nc;sed

� 	T
;

where the numerical flux for the hydrodynamic part of the system
(Eqs. (1a) and (1b)) is defined, following [14], as

f̂nc;hydro ¼

FðinÞh n� 1
2 vnc SðinÞ > 0;

f̂HLL � SðinÞþSðexÞ

2 SðexÞ�SðinÞð Þvnc SðinÞ < 0 < SðexÞ;

FðexÞ
h nþ 1

2 vnc SðexÞ < 0;

8>>><>>>: ð11Þ

where

SðinÞ ¼min uðinÞh � n�
ffiffiffiffiffiffiffiffiffiffiffiffi
gHðinÞh

q
;uðexÞ

h � n�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gHðexÞ

h

q� 
;

SðexÞ ¼max uðinÞh � nþ
ffiffiffiffiffiffiffiffiffiffiffiffi
gHðinÞh

q
;uðexÞ

h � nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gHðexÞ

h

q� 
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are the truncated characteristic speeds (found by considering the
eigenvalues of the hydrodynamic part of T ), and

f̂HLL ¼
SðexÞFðinÞh � SðinÞFðexÞ

h

� 	
n

SðexÞ � SðinÞ
� SðinÞSðexÞ

swht

SðexÞ � SðinÞ

is the Harten–Lax–van Leer (HLL) flux defined in [31]. It should be
noted that for most problems in shallow water hydrodynamics,
the Froude number rarely exceeds 0.2, and therefore only the sec-
ond case of Eq. (11) is frequently encountered [32].

For the sediment transport Eq. (2), an upwind flux is used, based
upon the assumption that transport is always in the direction of
the flow. This choice of numerical flux is known to work well in
practice [16]. It is defined as

f̂ nc;sed ¼
qðinÞb;h � n uRoe

h � n P 0;

qðexÞ
b;h � n uRoe

h � n < 0;

8<:
where

uRoe
h ¼

uðinÞh

ffiffiffiffiffiffiffiffiffiffi
HðinÞh

q
þ uðexÞ

h

ffiffiffiffiffiffiffiffiffiffi
HðexÞ

h

q
ffiffiffiffiffiffiffiffiffiffi
HðinÞh

q
þ

ffiffiffiffiffiffiffiffiffiffi
HðexÞ

h

q
is the so-called Roe-averaged value of the velocity uh.

By introducing ghost values for w(ex)
h, v(ex)

h, etc. on the domain
boundary, the interior and boundary edge integrals may be com-
bined because the expression for the numerical flux f̂nc is the same.
Therefore, the final form of the DG finite element discretization is

0 ¼
X

e

@twh þ Ghrwh � sh;vhð ÞL2ðXeÞ �
X

e

Fh;rvhð ÞL2ðXeÞ

þ
X

e

f̂nc; svht
D E

L2ð@XeÞ
þ vnc; ffvhggh iL2ð@XeÞ

� 
: ð12Þ
3.2. Implementation overview

In this section, a brief summary of our numerical model will be
given, including some details about the choice of basis functions
and the time stepping scheme used. For a more complete descrip-
tion pertaining to the current implementation of these items, con-
sult [16] or [18].

Recall from Section 3.1 that each element Xe is assumed to be
triangular. This choice of element allows for greater flexibility
when handling unstructured meshes, such as those used in the
numerical examples described in Section 4. On each element Xe,
the DG solution wh and test function vh may be expanded as

whðt; x; yÞjXe
¼
XN

l¼1

wh;l;eðtÞ/lðx; yÞ; ð13Þ

vhðt; x; yÞjXe
¼
XN

m¼1

vh;m;eðtÞ/mðx; yÞ; ð14Þ

where fwh;l;eðtÞgN
l¼1 and fvh;m;eðtÞgN

m¼1 are the sets of local degrees of
freedom,

N ¼ ðpþ 1Þðpþ 2Þ
2

is the number of degrees of freedom on each element, and
f/lðx; yÞg

N
l¼1 is the set of basis functions on the physical element,

defined in terms of the basis functions on the master element
f/̂lðn1; n2ÞgN

l¼1 through an affine mapping Ge : bXe ! Xe as

/lðx; yÞ ¼ /̂l G�1
e ðx; yÞ

� 	
;

where bXe is the master triangular element defined bybXe ¼ fðn1; n2Þ 2 R2 : n1 > �1; n2 > �1; n1 þ n2 < 0g:
Substituting the expansions (13) and (14) into Eq. (12) yields an
algebraic linear system of ordinary differential equationsX

e

Me
dWh;e

dt
¼
X

e

Rh;e; ð15Þ

where Me is the N � N elemental mass matrix defined as

½Me�lm ¼
Z

Xe

/lðx; yÞ/mðx; yÞdXe;

the N � 4 matrix Wh,e contains the degrees of freedom, and the
N � 4 matrix Rh,e denotes the remaining terms on the right-hand
side of Eq. (12).

In order to solve the system (15) for Wh,e, we invert Me, and
then apply a time stepping scheme. Using an L2ðbXeÞ-orthogonal ba-
sis reduces the mass matrix Me to a diagonal one, which may be
trivially inverted. For this reason, a hierarchical basis with the
L2ðbXeÞ-orthogonality property proposed by Dubiner in [33] has
been implemented.

The time stepping scheme utilized is an explicit strong-stability
preserving (SSP) s-stage, kth-order Runge–Kutta scheme, where
the pair (s,k) is one of (1,1), (s,2) with s P 2, (s,3) with 3 6 s 6 8,
or (s,4) with 5 6 s 6 8. The SSP RK scheme is designed so that if
the forward Euler method is stable under a given semi-norm and
Courant–Friedrichs–Lewy (CFL) condition, then the higher-order
scheme remains stable under the same semi-norm, but perhaps a
different CFL condition [16]. These methods also possess the desir-
able total-variation-diminishing (TVD) property. This time step-
ping method takes the following general form:

Algorithm 1 (SSP RK scheme). For each time step from tn to tn+1,

1. Set Wð0Þ
h;e  Wh;eðtnÞ.

2. For each stage i = 1, 2, . . . , s, set
WðiÞ
h;e  

Xi

j¼1

aijW
ðj�1Þ
h;e þ bijDtM�1

e Rh;e Wðj�1Þ
h;e ; tn þ djDt

� 	n o
:

3. Set Wh;eðtnþ1Þ  WðsÞ
h;e.

In the algorithm above, dj ¼
Pj�1

k¼1cj�1;k is a vector of length s of
time-lagging parameters, and the s � s matrices a, b, and c are opti-
mized parameters with respect to maximization of the CFL num-
ber. They satisfy the TVD constraints

aij P 0;Xi

j¼1

aij ¼ 1; and

cij ¼ bij þ
Xi�1

k¼j

ckjai;kþ1:

To be clear, it should be noted that Algorithm 1 must be performed for
each degree of freedom on every element Xe. Refer to [16,18,34] for
further details on SSP RK methods, and to [20] for values of a and b.

We conclude this section with some remarks on the use of slope
limiting. To eliminate local overshoots and undershoots, four dif-
ferent choices of slope limiters are implemented as post-process-
ing routines for Wh,e(tn+1). However, we only employ two of
these here, since the others are notorious for degrading the solu-
tion to first-order accuracy at local extrema (effectively p = 0 in
these regions), and we wish to test our model with p > 1 in the
examples listed in Section 4. Thus, when p = 1, the limiting proce-
dure formulated by Cockburn and Shu in [35] is used if needed.
This is the case for the entire morphodynamic system in Section
4.3, and for the sediment transport equation in Section 4.4. But
for p > 1, it becomes necessary to make use of a higher-order slope
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limiting procedure. For this paper, we implement the algorithm
outlined in the work by Xu et al. in [36], which is a local limiting
procedure based on the application of a WENO-type limiter to
the coefficients of the higher-order Taylor expansion about the ele-
ment barycenter. It has been shown to work well in practice [36].
For the sake of brevity, we shall not expound upon the implemen-
tation details here, but instead we refer the interested reader to
Sections 2.1, 2.2, 2.3, and 2.5 of [36]. In this paper, we found that
it was only necessary to apply the procedure of Xu et al. to the sed-
iment transport equation for the test cases in Sections 4.2 and 4.4,
and to the entire system for the case described in Section 4.3. For
the remaining test cases, we found that no limiting was necessary
in order to preserve numerical stability.

4. Numerical examples and results

In this section, numerical examples and results using our model
are presented. This method is applied to four problems: an evolv-
ing dune, a converging channel, scouring around a bridge pier, and
an idealized inlet. These simulations were run in parallel (with the
exception of the first test case) on the Institute for Computational
Engineering and Science’s (ICES) bevo2 cluster, as well as on the
Texas Advanced Computing Center’s lonestar cluster [37].

4.1. Convergence study: evolution of a dune

In this test case, a problem posed by Exner [4] in 1925 is exam-
ined. This problem considers the evolution of an initially symmet-
ric mound, or dune, which is subjected to steady, unidirectional
flow under the assumption of a rigid-lid (which means that f is as-
sumed constant in space and time). Solving this problem allows us
to test the sediment transport model independently of the hydro-
dynamics by comparing the numerical solution to a classical one
derived in [4] for the purpose of verifying h- and p-convergence
rates. It also allows us to verify and expand upon the results pre-
sented in [16] for second- and third-order RKDG schemes.

To properly compare the numerical solution to the exact solu-
tion, a simpler model must be used. Exner’s model uncouples the
sediment transport equation from the SWE by specifying a unidi-
rectional flow velocity as

u ¼
qf

H
¼

qf

fþ b
;

v ¼ 0;

where qf is the (non-negative) constant flow discharge rate. Note
that under the rigid-lid assumption, f is now assumed constant
throughout the domain X = (�k/2,k/2)2. Also, it is assumed that
qb ¼ ðAkuk

n
2;0Þ

T , where A is a non-negative constant and n = 1.
When e0 = 0, Eq. (2) reduces to

@b
@t
� @

@x
Aqf

fþ b

� �
¼ 0: ð16Þ

Let b(0,x,y) = b0(x) be the initial data, which is assumed to be
sufficiently smooth. Then the exact solution derived in [4] is given
implicitly by

bðt; x; yÞ ¼ b0ðx� ctÞ; ð17aÞ

cðbÞ ¼
Aqf

ðfþ bÞ2
; ð17bÞ

where c denotes the speed at which the top of the dune propagates.
This is the same as the characteristic speed.

For this problem, the initial condition is given by

b0ðxÞ ¼ A0 þ A1 cos
2px
k

� �
; ð18Þ
with A0 = 2, A1 = �1, and k = 20. Also, we take f = 0 and Aqf = 1 in Eq.
(17b). As regards the boundary conditions, the solution is assumed
periodic in the x-direction over X, so that b(t,�k/2,y) = b(t,k/2,y),
with no normal flow at y = ±k/2.

Nonlinear hyperbolic conservation laws have the well-known
property that solutions typically develop very steep gradients
and eventually discontinuities or shocks. This behavior can be seen
in this problem when performing a rudimentary characteristic
analysis. Eq. (16) may be written as

@b
@t
þ @f
@x
¼ 0;

with f = �Aqf/(f + b), and carrying out the partial derivatives gives
the non-conservative form

@b
@t
þ cðbðxÞÞ @b

@x
¼ 0;

where c(b(x)) = @f/@b. Then it can be seen that the breaking time
when the shock (or sediment bore) forms is given by

tb ¼ � min
n

d
dn

cðb0ðnÞÞ
� ��1

¼
5 5�

ffiffiffi
7
p� 	3

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
7
p
� 4

p � 4:5685 s:

In our study, four meshes denoted h1 through h4 are considered. The
coarsest mesh h1 consists of 800 elements, arranged according to
Fig. 2(a). The value of h, defined here as the length of an element
in the x-direction, is 1 m. Mesh h2 is a 1:4 refinement of h1, with
h = 1/2 m and 3200 elements (see Fig. 2(b)). This process is repeated
to generate meshes h3 and h4.

The numerical model is then run until the breaking time tb is
reached. The time step size is set small enough so that the spatial
errors dominate the overall error. The DG solution bh is computed
using piecewise constant, linear, quadratic, and cubic basis func-
tions (p = 0,1,2, and 3) with the SSP (1,1), SSP (2,2), SSP (3,3),
and SSP (5,4) time stepping schemes, respectively, and the errors
are computed by comparing the approximate solution bh to the ex-
act solution given by Eqs. (17a) and (17b). The h-convergence re-
sults using the L1(Xh)-norm at t = 2 s and t = 4 s are shown in
Fig. 3(a) and Fig. 4(a), respectively, while the p-convergence results
using mesh h4 and the L1(Xh)-norm at t = 2 s and t = 4 s are shown
in Figs. 3(b) and Fig. 4(b), respectively.

At t = 2 s, the solution is still smooth, as this time is well before
the time of formation of the shock. Thus, the theoretical h-conver-
gence rate of p + 1 is very nearly attained, as can clearly be seen in
Fig. 3(a) for the L1(Xh)-norm. It should be noted that these rates
are also attained for the L1(Xh)- and L2(Xh)-norms, though these
results are not shown here. For p-convergence, the theoretical
exponential rate is attained, and this is shown in Fig. 3(b).

However, for t = 4 s, which is much closer to the breaking time tb,
the h-convergence rates are either seriously degraded (for the cases
of p = 0, 2, and 3) or obliterated (for the case p = 1) when the error
over the entire domain Xh is under consideration. This is shown in
Fig. 4(a) for the L1(Xh)-norm, and similar results were obtained
for the L1(Xh)- and L2(Xh)-norms. In this case, the largest portion
of the error has accumulated in the region {(x,y):x 2 (4,6), y 2
(�10,10)}, which corresponds to the region containing the steepest
gradients in the solution, and is also the region containing the shock
when t P tb. This issue demonstrates the need for further h-refine-
ment in this region, as the results shown in Fig. 4(a) appear to display
pre-asymptotic behavior. However, when accuracy is considered
only in the smooth region of the solution, taken here as

Xsm ¼ fðx; yÞ : x 2 ð�10;4Þ; y 2 ð�10;10Þg;

it can be seen in Table 1 that nearly full order of convergence is
restored for the cases of p = 0 and p = 1, while the convergence rates
for the cases of p = 2 and p = 3, though not quite optimal, are much



Fig. 2. Computational meshes (a) h1 and (b) h2 showing the h-refinement pattern
utilized in the dune evolution test case. Mesh h3 (not shown) is a 1:4 refinement of
mesh h2, and mesh h4 (also not shown) is a 1:4 refinement of mesh h3.

Fig. 3. L1(Xh) convergence rates at t = 2 s.

C. Mirabito et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 189–207 195
improved, and appear to be tending towards the theoretical rates
pending further h-refinement. This verifies that the first- through
fourth-order RKDG methods maintain their accuracy and theoreti-
cal order of convergence away from the region containing steep gra-
dients and shocks.

In Fig. 4(b), we see that the p-convergence rate at t = 4 s does
not appear to seriously degrade until p = 3. Since the results on
mesh h4 were used here, the effects of the value of h being in the
pre-asymptotic regime are mitigated; indeed, the convergence rate
is further degraded when using mesh h3, and no convergence is
observed when using meshes h2 and h1 (not shown here). Despite
these shortcomings, however, these results show that the model
maintains its accuracy in p when h is small enough.

4.2. A converging channel

In [4], Exner extended the model presented for the previous test
case to account for channels of varying width with vertical walls.
He considered a converging or bottleneck channel with an initially
flat bed. This is the computational domain considered in this test
case, and it is shown in Fig. 5. The channel considered is 2 km long,
500 m wide at the eastern and western ends, and narrows to a
width of 250 m at the center.

Rather than considering the evolution of the bed in a one-
dimensional setting, as Exner did, we utilize the full morphological
system to consider it in a two-dimensional setting. This allows
simultaneously examining both the evolution of the bed and
changes in the velocity and flow rate patterns over a 90-day period.
For this case, a no normal flow boundary condition is assumed for
the northern and southern channel walls, while a fixed inflow rate
of 5 m2/s is imposed at the western end of the channel. This rate
was chosen so that the flow speed is 0.5 m/s at either end of the
channel, with a maximum speed of approximately 1 m/s in the
throat of the channel. At the eastern boundary, the elevation is held
fixed at f = 0, chosen to enforce mass conservation. The bed is ini-



Fig. 4. L1(Xh) convergence rates at t = 4 s.

Table 1
Comparison of h-convergence rates at t = 4 s on the entire discretized domain Xh and
on the smooth region Xsm only.

p Mesh L1 convergence rates

in Xh in Xsm

0 h1 � � � � � �
h2 0.6305 0.9762
h3 0.6641 0.9892
h4 0.7001 0.9967

1 h1 � � � � � �
h2 �0.1522 1.8339
h3 1.4000 1.7602
h4 0.7128 1.8740

2 h1 � � � � � �
h2 1.8513 1.8512
h3 1.0743 2.3752
h4 2.2383 2.6923

3 h1 � � � � � �
h2 1.5706 3.4398
h3 2.2724 3.1037
h4 2.0180 3.5808

Fig. 5. Unstructured computational meshes used in the converging channel test
case. The ratio hcoarse/hfine � 4.88, where hcoarse and hfine are defined here as the
longest edge lengths in the coarse and fine grids, respectively.
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tially flat, with a bathymetric depth of 10 m. The bottom is also
non-porous (e0 = 0), and the sediment density is taken as
qs = 2000 kg/m3, while the median grain size is d50 = 0.2 mm. For
the purpose of calculating qb, the seawater density is taken as
q = 1024.763 kg/m3, which is the value given by the UNESCO
1980 International Equation of State (IES-80; see [38] for details)
with temperature T = 20�C and salinity S = 35 psu. For the hydrody-
namics, nonlinear bottom friction given by sbf = cfkuk2/H is consid-
ered, where cf is the (dimensionless) friction coefficient or bed
roughness, taken here to be 0.0025.

For purposes of comparison, this test case is run using two dif-
ferent grids. The first is a coarse mesh, shown in Fig. 5(a), and the
second is a finer-scale mesh, shown in Fig. 5(b). For each of these
grids, numerical realizations of wh using piecewise constant, linear,
and quadratic basis functions are considered. For the case of piece-
wise constant basis functions, time step sizes of 1.5 s (coarse grid)
and 0.25 s (fine grid) are used with the Forward Euler scheme SSP
(1,1); for piecewise linear basis functions, 0.75 s and 0.1 s, respec-
tively, with SSP (2,2); for piecewise quadratics, 0.5 s and 0.1 s,
respectively, with SSP (3, 3). Recall from Section 3.2 that a high-
er-order slope limiter described in [36] is applied when p = 2,
which allows us to take slightly larger time step sizes than usual,
though still well below the theoretical threshold given by the CFL
condition. For example, using the estimate for the CFL restriction
given by

Dt 6 min
Xe

he

u � nþ
ffiffiffiffiffiffi
gH

p� 	
e

1
2pþ 1

0B@
1CA; ð19Þ

where he is defined here to be the longest (elemental) edge length,
and 1/(2p + 1) is an estimate of the CFL number [16], we obtain
DtCFL � 0.85 s for the coarse grid and DtCFL � 0.15 s for the fine grid.
In practice, however, time step sizes of approximately DtCFL/2 must
be taken before the model becomes stable when not utilizing a
slope limiter; the ability to take time step sizes larger than DtCFL/
2 is thus a welcomed feature of this slope limiter.

Plots of the bathymetry for p = 0, 1, and 2 on the coarse mesh at
t = 90 days are shown in Fig. 6, while Fig. 7 shows the correspond-
ing velocity magnitude. In Fig. 6, it can be seen that the bottom
undergoes erosion in the converging part of the channel because
the flow is accelerating there (shown in the corresponding figures
for kuk2). Conversely, sediment accretion can be seen in the diverg-
ing part of the channel since the flow speed is decreasing there. The
erosion and accretion patterns are not uniform across the width of



Fig. 6. Bathymetry (m) after 90 days on the coarse mesh. Fig. 7. Flow speed (m/s) after 90 days on the coarse mesh.
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the channel, however, as it can be observed in Fig. 7 that the veloc-
ity is nonuniform across the channel width; it is slightly higher
near the center. Since the sediment transport rate qb is a function
of kuk3

2, the magnitude of the erosion and accretion is seen to vary
considerably across the channel width.

The numerical solution exhibits qualitatively similar behavior
on the fine-scale mesh, except with generally better resolution.
Consider the bathymetric profiles shown in Figs. 6 and 8. For the
piecewise constant case, notice that the fine-scale solution reflects
higher sediment mass transport rates. For the cases of p = 1 and
p = 2, differences in resolution are more pronounced: the solution
on the fine mesh appears to better account for the land boundaries,
and the resolution in the transition regions (on the upstream edge
of the scouring region, between the erosion and deposition zones,
and just downstream of the deposition region) is much sharper.
The piecewise quadratic solution on the fine mesh (Fig. 8(c)) more
sharply captures the transport behavior in the center of the chan-
nel; the cross-stream profile is not as well-resolved on the coarse
mesh, especially in the accretion zone.

Now consider the velocity profiles shown in Figs. 7 and 9. For
the case of p = 0, the fine-scale solution shows a slightly larger
speed gradient, especially near the boundaries, explaining the dif-
ferences in bh between Fig. 6(a) and Fig. 8(a) as a result of the dif-
fering transport rates. For the cases of p = 1 and p = 2, one
immediately spots the differences in the flow behavior near the
land boundaries in the channel throat when comparing them with
the piecewise constant results. The increase in velocity from the
channel center to the boundary region is more well-defined; this
feature appears to be smeared in Fig. 7(b) and (c). The highest
speeds occur nearer to the boundaries in the throat, and the veloc-
ity gradient downstream of the throat is much higher compared to
the coarse-grid solution.

When p P 1, a long, thin boundary layer is seen downstream of
the channel throat. Its appearance is consistent with the results
shown in [13], and may be partly due to the effect of the no normal
flow BC there (but free tangential slip is allowed). However, we
note that by comparing Fig. 7(b) and Fig. 9(b), its thickness appears
to depend on the grid size: as h ? 0, this layer becomes thinner,
and appears to be confined only to those elements next to the land
boundary.

Comparing the DG solutions for b and kuk2 across the different
values of p, we immediately notice that the p = 0 approximation of
b only superficially captures the scouring and accretion behavior;
the computed sediment transport rate in the converging region
appears too high, while it is too low along the land boundaries.
Thus, some numerical diffusion is evident here; the p = 0
approximation of b appears to be overly diffusive. Increasing p dra-
matically improves the resolution of bh, especially near the bound-
aries, in particular for p = 2, where the solution appears to sharply
resolve the subgrid-scale features in the transition region. Fig. 6(b)
and Fig. 8(c) show that the higher-order slope limiter suppresses
oscillations near the land boundaries in the throat of the channel



Fig. 8. Bathymetry (m) after t = 90 days on the fine mesh.
Fig. 9. Flow speed (m/s) after t = 90 days on the fine mesh.
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when p = 2. Turning our attention to kuk2, we find a similar prob-
lem of resolution when p = 0: the cross-stream velocity profile ap-
pears to be nearly uniform in the throat of the channel, and the
model fails to capture the behavior of the solution near the land
boundaries in the channel throat; the predicted speed still appears
to be too low.

Based on the issues pointed out thus far, it should be noted that
the coarse-grid solutions do not seem to be satisfactory for any value
of p 2 {0,1,2} when compared with some results shown in the liter-
ature [13,25]. Results obtained using the fine-scale grid are still not
well-resolved when p = 0, but are generally very well-resolved when
p P 1. These observations, especially the final one, underscore the
need for taking p of sufficient order in the DG approximations.

It is important to observe the interaction between the bathy-
metric and velocity profiles as both evolve in time: as the bed is
eroding in the converging part of the channel, the total depth H in-
creases, which in turn acts to decrease kuk2. Conversely, as a
mound begins to form on the bed in the diverging part of the chan-
nel, H decreases, causing an increase in kuk2 in this region. This
ongoing (coupled) process results in the entire velocity profile
slowly shifting slightly downstream with time. These results are
shown in Figs. 10 and 11.

Lastly, it should be noted that the results shown in Figs. 6–9 all
compare well qualitatively with an analytical solution derived by
Exner in [4] for a problem with similar geometry, with results
shown in Tassi et al. [13] for this problem posed in a non-dimen-
sional setting, and with the computed results presented in Kubatko
et al. [25] using a combined CG-DG model (for p = 1).

4.3. Scouring around a Bridge Pier

In this section, another well-known and well-studied problem
in coastal engineering is examined: scouring, or bed erosion,
around a vertical, cylindrical bridge pier, such as those commonly
seen on roadway and railway bridges across rivers and estuaries.
Applications of these problems to coastal engineering activities
motivate our model testing here, as scouring has been cited as
one of the most common causes of bridge failures in these regions
[8,39]. We also wish to verify that our model accurately depicts the
major flow features associated with the scouring process, at least
in a qualitative sense. This problem would be more accurately sim-
ulated by a three-dimensional Navier–Stokes model, but an inter-
esting question is to determine which features can be captured
by a hydrostatic, depth-averaged model.

In this problem, an initially flat bed is subjected to a uniform,
unidirectional flow originating from the western (upstream)
boundary. This free stream or upstream velocity is denoted as
u1 = (u1,0)T. The domain under study in this test case is a square
of side length 30 m with a circular island of diameter D = 2 m posi-
tioned at the origin. However, since the true solution w is symmet-
ric about the x-axis, our domain is chosen as



Fig. 10. Bathymetry (m) at 30-day intervals on the fine mesh with p = 2.
Fig. 11. Flow speed (m/s) at 30-day intervals on the fine mesh with p = 2.
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X ¼ fðx; yÞ 2 R2 : x 2 ð�15;15Þ; y 2 ð0;15Þ; x2 þ y2 > 1g

in order to save computational time. Two computational meshes
shall be used for this test case for comparison. These are shown in
Fig. 12. The bed is initially flat with a depth of 1 m. Boundary con-
ditions are similar to those for the previous test case, and are as fol-
lows: at x = �15, the velocity is fixed at u1 = 0.2 m/s. At the bridge
pile boundary, a no normal flow boundary condition is imposed. No
normal flow is also imposed at the top (y = 15) and along the axis of
symmetry (y = 0). At x = 15, the free surface elevation is specified as
f = 0. Values for e0, qs, d50, q, and cf are the same as for the test case
in Section 4.2. However, in order to save computational time, the
sediment transport rates are artificially inflated by a factor of
1000 so that the bed evolution may be examined after 1 day, well
after the flow becomes fully-developed.

Following the pattern begun with the previous test cases, we
seek whjXe

2 PpðXeÞ for p = 0, 1, and 2 for both meshes. When
p = 0, the time step sizes are set to 0.025 s (coarse mesh) and
0.01 s (fine mesh) and SSP (1,1) is employed; p = 1, 0.01 s and
0.005 s, respectively, with SSP (2,2); p = 2, 0.0075 s and 0.0025 s,
respectively, with SSP (3,3). Recall from Section 3.2 that the slope
limiter described in [35] is applied to all components of wh in order
to control and/or suppress oscillations when p = 1. For the piece-
wise quadratic case, the WENO-type limiter described in [36] is
used, again for the purpose of enforcing some form of TVB stability.

For this problem, experimental results show that the basic
scouring process and flow profile evolution may be summarized
as follows. The initial approach flow splits in the horizontal direc-
tion when reaching the pier into an upper and lower flow, leaving a
stagnation point at the head of the pier (the point (�1,0) in our
domain). A corresponding stagnation pressure results; fluid
approaching the stagnation point decelerates, causing some pileup
(and thus an increase in f) [39] and a bow wave, and then acceler-
ates along the sides of the pier [40]. The fully-developed flow speed
along the pier perimeter reaches its maximum at an angle h � 75�
from the pier head, but then separates in the region 90� 6 h 6 120�
as a result of the acceleration along the sides [41], and a long wake
results. Meanwhile, scouring of the bed is initiated near h � 75�,
closely corresponding to the point where the (attached) accelerat-
ing flow reaches its maximum speed [41]. Sediment accretion oc-
curs just downstream of the pier, and the mound slowly drifts
downstream with time because of the growing scour hole [41].

However, it should be noted that in addition to this, the ap-
proach flow also splits in the vertical direction at the upstream
stagnation point; the up-flow contributes to the formation of the
bow wave, while the down-flow forms a vertical eddy or vortex
[40]. Because of accelerating flow around the pile, a horseshoe vor-
tex system is subsequently formed, and this has been deemed to be
the main scouring agent upstream of the pier [40,41]. Thus, in time,
the scour hole advances upstream, eventually becoming U-shaped
[40]. We note that this latter process is inherently a three-dimen-
sional effect, and consequently we cannot hope to properly simu-
late it with our two-dimensional model. We proceed with this
caveat in mind.



Fig. 12. Unstructured computational meshes used for the bridge pier scouring test
case. The fine-scale mesh (b) is a uniform 1:4 refinement of the coarse-scale mesh
(a).

Fig. 13. Bed profiles after 1 day on the coarse mesh.
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The resulting bed profiles are shown in Fig. 13 for the coarse-
scale mesh and in Fig. 15 for the fine-scale mesh. The correspond-
ing velocity profiles are displayed in Fig. 14 for the coarse-scale
mesh and in Fig. 16 for the fine-scale mesh. In all results, the loca-
tions of the stagnation points, scouring initiation points, points of
maximum flow speed along the perimeter, and flow separation
points appear to be in good agreement with the results presented
in [39,41].

In Figs. 13 and 15, it can be seen that scouring emanates from a
point on the pier perimeter near h = 75�, which agrees with exper-
imental data in [41], and then is deposited just downstream of the
pile, as should be expected. However, the extent of the scouring
varies considerably between the coarse- and fine-scale meshes,
especially when p P 1; h-refinement near the bridge pier appears
to play a significant role here in the accurate calculation of the sed-
iment transport rate. Also, when p P 1, the resolution of the scour
hole seems to be slightly improved, and its extent appears to be re-
duced. The same may be observed with the corresponding velocity
profiles: the wake appears slightly sharper and more compact
(although the flow seems to separate slightly too far downstream
compared to the coarse-scale solution, which shows separation
around h = 120�), as does the flow near the upstream stagnation
point.

By closely observing the differences in the scouring and accre-
tion profiles when p P 1, the following may be noted. When
p = 1, differences between the coarse- and fine-scale solutions are
quite apparent; the coarse-grid scour hole appears smeared, and
simply emanates outward at h � 75�, while the fine-grid hole
exhibits a downstream tail. Its visual appearance is similar to that
of the p = 2 coarse-grid solution. While the corresponding fine-grid
solution for p = 2 shown in Fig. 16(c) displays some additional
structure, it is not substantially qualitatively different. Conse-
quently, the piecewise quadratic approximations to b may possibly
be showing some signs of convergence (although additional trials
would be needed to verify this).

Many differences in the bed evolution can be remarked upon
among the cases for p = 0, 1, and 2. For the piecewise constant case,



Fig. 14. Velocity profiles after 1 day on the coarse mesh.

Fig. 15. Bed profiles after 1 day on the fine mesh.

C. Mirabito et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 189–207 201
notice that the eroding and accretion regions extend nearly two-
thirds of the way to the domain boundary. This is clearly unrealis-
tic, since both experimental and analytical investigations suggest
that the boundary of the scour hole lies much closer to the pile
[40]. Thus, the RKDG scheme with p = 0 seems to be much too dif-
fusive, and this demonstrates the need for increasing p to sufficient
order. Also, the maximum scour and sediment accumulations are
far less than the maxima attained for the other two cases, possibly
indicating that the calculated sediment transport rates may be too
low. This agrees with our observations in Section 4.2. When p is
increased to one, a more realistic result emerges, as the area of



Fig. 16. Velocity profiles after 1 day on the fine mesh.
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erosion and deposition is constrained to a distance not exceeding
approximately 2D. The higher scouring and accretion rates may
be attributed to the larger velocity gradients seen in Figs. 14(b)
and Fig. 16(b), especially in the wake, whose width is now much
smaller; it is not smeared. The piecewise quadratic solutions
appear even less diffusive, even with the use of the higher-order
slope limiter: an even larger amount of sediment pick-up occurs
in a still smaller scour hole located closer to the pier compared
with the p = 1 case, and the ends of the U-shape attained by the
scour hole are more evident. The wake and upstream stagnation
regions are more compact as well. Additionally, observe that the
accretion region emanates outward at a larger angle h as p is in-
creased. It should be noted, however, that the general lack of diffu-
sion seen in these results for p P 1 is primarily a numerical
phenomenon, and it is a consequence of our decision to ignore
the diffusive terms in Eqs. (1a), (1b) and (2); some physical diffu-
sion will be seen in reality.

Lastly, we note that examination of the elevation profile for all
model runs revealed strong numerical evidence of a bow wave, as
values of f were elevated near the upstream stagnation point
where seawater pileup is expected. However, for the sake of brev-
ity, we do not show these results here.

4.4. An idealized inlet

We now turn our attention toward a coastal modeling applica-
tion. In this test case, an idealization of a typical coastline, channel,
and bay or estuary is considered. For this case, we wish to ensure
that the model properly captures the twin eddy formation in the
back bay during an incoming (flood) tide, the corresponding forma-
tion in the ocean during an outgoing (ebb) tide, the formation of an
ebb shoal in the ocean off the ends of the jetties, and the formation
of a corresponding flood shoal in the back bay. Ebb and flood shoal
formation is very common in both coastal inlets and river deltas,
and they form as a result of sediment accretion caused by deceler-
ating flow exiting the channel during the ebb and flood tides,
respectively. Though the time scales are generally on the order of
months to many years (assuming fair weather), this process, left
unchecked, can severely alter the flow patterns of an inlet and dis-
rupt shipping operations, and the ensuing dredging operation may
be very expensive. Thus, analysis of these systems serves an impor-
tant purpose. An example of an ebb and flood shoal is shown in
Fig. 17.

The domain under consideration here is shown in Fig. 18. It is a
simplified, or idealized, inlet containing a channel 300 m wide and
525 m long which connects a rectangular section (stretching 3 km
north to south and 2.475 km out to sea) of open ocean to the west
with a rectangular back bay (spanning 3 km north to south and
1.5 km inland) to the east. At the western end of the channel are
twin jetties 50 m wide and 225 m long. The initial bathymetry in
the back bay and channel is flat and measures 5 m, while the bot-
tom slopes linearly in the open ocean to the west, measuring 19 m
at the western open ocean boundary. The water in the sea, channel,
and back bay is initially tranquil.

The boundary conditions for this problem are as follows: a no
normal flow condition is imposed at the northern, southern, and
eastern edges of the open ocean, as well as at the jetties, channel
walls, and all edges of the back bay. On the western open ocean
boundary, we specify a spatially uniform periodic flow rate, with
an amplitude of q(ex) = (0.75,0)T m2/s, and a frequency correspond-
ing to that of the M2 tide (period 12h25m14s). This amplitude was
chosen so that the maximum flow speed in the channel is approx-
imately 1 m/s.

This test case is solved over a period of 10 days using piecewise
constant, linear, and quadratic basis functions for the purpose of
comparison. For the piecewise constant approximation, a time step
size of 1.25 s with SSP (1,1) is used; for the piecewise linear
approximation, 0.5 s with SSP (2,2); for the piecewise quadratic
approximation, 0.25 s with SSP (3,3). Recall once more from Sec-
tion 3.2 that for the sediment transport equation, the slope limiter
of Cockburn and Shu [35] is applied when p = 1, and the higher-or-
der slope limiting procedure of Xu et al. [36] is applied when p = 2.



Fig. 17. A photographic description of ebb and flood shoal formation in Shinnecock
Inlet, NY, USA. Photograph courtesy NOAA Coastal Services Center.

Fig. 18. Computational domain of the idealized inlet system containing 4374
elements. The initial bathymetry (m) is shown as well. The jetties are 225 m long by
50 m wide.

Fig. 19. Bathymetry (m) in the channel region at t = 10 days.
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The bed remains non-porous, with the same values for d50 and q as
in Section 4.2. However, the grain density is now increased to
2650 kg/m3. The nonlinear bottom friction coefficient cf is in-
creased to 0.003 for this case. Additionally, the sediment transport
rates were magnified 50 times in order to speed up the bed evolu-
tion process. This was done in the interest of saving computational
time.

Fig. 19(a), (b), and (c) show plots of the piecewise constant, lin-
ear, and quadratic approximations of b after 10 days, respectively,
in the vicinity of the channel. The other areas of the domain expe-
rience negligible amounts of sediment transport, and so are not
shown here; the most interesting flow features are found in the
channel region. The most prominent of these is the formation of
dual scour holes in the center of the channel—one located at the
entrance to the back bay, the other just off the ends of the twin jet-



Fig. 20. Velocity profiles during approximate maximum ebb. Fig. 21. Velocity profiles during approximate maximum flood.
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ties. These scour holes are caused primarily by converging acceler-
ating flow during the incoming tide (for the hole near the jetties)
and during the outgoing tide (for the hole at the bay entrance). This
dual scour hole formation is consistent with what is observed in
real channel-inlet systems, such as Shinnecock Inlet, NY, where
bathymetric soundings reveal dual scour holes in approximately
the same locations as described above (though these are slightly
off-center because the channel is not straight, as can be seen in
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Fig. 17). The jagged shape of the scour holes is a direct result of the
relative coarseness of the mesh in this region (see Fig. 18); this grid
size was chosen as a compromise between resolution and compu-
tational time.

Notice also in Fig. 19(b) and (c) that sediment accretion occurs
in the center of the channel. This phenomenon is due to the slightly
negative velocity gradient existing there for most of the duration of
the M2 tidal cycle. See Figs. 20 and 21, and observe the channel
center. These results suggest a mechanism by which channels
could fill in over longer time periods and possibly block the flow,
posing a hazard to shipping interests, however, this requires fur-
ther investigation. Finally, we notice the formation of ebb and flood
shoals beyond the scour holes, which are also caused in part by the
negative velocity gradients in these regions during the ebb and
flood tides, respectively.

Comparing the results across the different values of p, we re-
mark that the piecewise constant approximation to b once again
fails to capture the full extent of the induced bed evolution: the
scour hole depths are approximately 9 cm and 7 cm at the jetties
and back end, respectively, compared with 49 cm and 36 cm for
the piecewise linear case and approximately 55 cm (both ends)
for the piecewise quadratic case. It should be noted, however, that
values for the scour hole depths for p P 1 are highly dependent on
the use of the slope limiter; it should be made clear that without
the use of a slope limiter, runaway scouring will eventually occur,
and the resulting scour hole depths will become non-physically
large, leading to numerical instability. In any case, the depths were
substantially higher than those obtained when p = 0.

The maximum speed in the channel is approximately 0.2 m/s
lower when p = 0 compared with p > 0, and since the transport rate
depends on kuk3

2, the induced transport rate of sediment is lower.
Low deposition rates for this case result in scant evidence of ebb
and flood shoal formation, and of accretion in the channel center.
These low observed rates of sediment transport compared to high-
er-order approximations are again consistent with what was seen
in Sections 4.2 and 4.3.

Seeking a higher-order approximation of w yields a dramatic
improvement in resolution, as numerical evidence for ebb and
flood shoal formation is clearer, and sediment accretion in the cen-
ter is more easily seen. The solution for the case of p = 2 appears to
be even less diffusive; the scour holes are now very well-defined,
as is the accretion in the channel center.

For this test case, as alluded to earlier, it is worthwhile to exam-
ine the velocity profiles at two different times—during the approx-
imate time of maximum ebb, which is the time in which the
seaward current associated with the outgoing tide is the strongest,
and during the approximate time of maximum flood, when the
incoming tidal current is the strongest. Fig. 20 shows the flow pro-
file for p = 0, 1, and 2 at maximum ebb. Immediately it is seen that
the numerical solution for the piecewise constant approximation
to kuk2 is unrealistically simple; the model cannot resolve the dual
eddies that form in the ocean as a result of interaction with the jet-
ties. Even within the channel, the grid- and subgrid-scale flow fea-
tures are not well-resolved. This changes drastically when p P 1,
as Fig. 20(b) reveals two sets of dual eddies. One of these is a pair
of jetty-scale eddies appearing in the ocean near the leading edge
of the main seaward current coming from the channel. A pair of
kilometer-scale eddies in the back bay is present as well, and these
are residual eddies which contain remnants of the seawater trans-
ported into the bay during the previous incoming tide. They supply
the seawater mass for the return flow. The p = 2 solution appears to
give slightly better resolution of these large-scale eddies. Notice
also that the solutions for p P 1 reveal much greater detail within
the channel, especially near the scour holes, where small regions of
increased velocity are seen. In addition, long, thin tails of slow-
moving seawater are present near the channel walls—a feature
not seen in the p = 0 case, but consistent with results shown in
[16]. Grid- and subgrid-scale velocity gradients are better resolved
here, too, specifically in the piecewise quadratic case. All of these
observations underscore the need to take p P 1 in order to obtain
a reasonable flow profile.

The velocity profiles for the opposite tidal phase are shown in
Fig. 21. Similar remarks from the previous paragraph about the
solutions for the different values of p apply here as well: the
numerical solution for p = 0 is still far too simplistic, while the
piecewise linear approximation only partially resolves the (now
clearly visible) dual eddies in the back bay, which appear to be
nearly fully resolved only when p = 2 (shown in Fig. 21(c)). These
observations and results are consistent with those in [16]. Note,
however, that during the flood tide, a pair of unnatural residual
kilometer-scale eddies remain in the ocean, which is likely a result
of the interaction between the outgoing current (originating from
the channel) and the flow-specified western boundary: they likely
are deflected back into the domain and do not dissipate quickly en-
ough since Eqs. (1b) and (2) neglect diffusion terms. This not only
highlights the issues relating to numerical diffusion, or lack there-
of, but also highlights the ongoing issue of proper specification of
open ocean boundary conditions in the framework of the DG meth-
od, which were taken to be

bðexÞ ¼ bðinÞ;

HðexÞ ¼ HðinÞ; and

qðexÞ ¼ ð0:75;0ÞT

for this test case. Both issues need to be further investigated.
As was the case during maximum ebb, the cross-stream flow

features are better resolved when p is increased to at least one,
and they are very well-resolved when p is increased to two, which
successfully captures the more complex features. Specifically, con-
sider the flow between the jetties: the maximal speed occurs at
two locations in this region, compared to just one when p = 1.
Obviously, this phenomenon occurs during the outgoing tide as
well, but is not quite as easily discerned in Fig. 20(c) because we
are not quite at maximum ebb. Again, these results agree with
those presented in [16], and the presence of multiple local maxima
in kuk2 suggest the presence of multiple local maxima in b as well.
This is indeed the case, and may be spotted in Fig. 19(c). Thus, the
corresponding bed profile may be thought of as possessing a dual–
dual scour hole arrangement, rather than simply a dual setup as
seen in Fig. 19(b).

4.5. Parallel performance

We conclude this section with some brief remarks on the per-
formance aspect of the model in parallel. The numerical results
presented in the previous three sections have focused on the
improved accuracy in wh with increasing p. However, this
improvement in accuracy comes with the price of additional com-
putational costs as p is increased. For example, increasing p from
zero to one triples the number of degrees of freedom, and, in the
case of the converging channel with the coarse grid, requires twice
as many time steps. Also, additional computational work is needed
to evaluate the interior and edge integrals, as more quadrature
points are required. We attempt to quantify the amount of extra
work required in the test case that follows.

Consider once again the converging channel test case described
in Section 4.2. For this trial, only the coarse grid is considered. Our
objective is to measure the relative CPU times when the model is
run for p = 0, 1, and 2. We run the model using the same parame-
ters as described in Section 4.2, except that the model is run for
1 day, instead of 90 days. For each run, 4 processors were utilized,



Table 2
Relative computational costs for solving the converging channel test case out to 1 day,
using the coarse grid and 4 processes.

p Dt (s) SSP (s,k) CPU time (s) Ratio

0 1.50 1, 1 24.56 1.00
1 0.75 2, 2 139.40 5.68
2 0.50 3, 3 394.42 16.06
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on a Dell PowerEdge cluster located at the Institute for Computa-
tional Engineering and Sciences (ICES) at The University of Texas
at Austin (bevo2, for specifications visit the ICES web page
www.ices.utexas.edu).

The results of these three model runs are shown in Table 2. As
can be observed there, using piecewise linear basis functions
instead of piecewise constant ones results in a nearly sixfold
increase in CPU time, and using piecewise quadratic basis func-
tions leads to a sixteen-fold increase. Both values are well below
estimates which account for increases in the number of degrees
of freedom, Runge–Kutta stages, time steps, and quadrature points.
Since the run-time optimization process is complex, this phenom-
enon requires additional investigation; the reader is cautioned that
the results shown here are preliminary; a much more thorough
scaling and performance analysis will follow in a future paper.

5. Conclusions

In this paper, a well-balanced (as demonstrated in [14]) DG
morphological model was implemented within the ADCIRC model-
ing framework by following an extended approach which specially
treats the non-conservative products through the addition of stabi-
lizing terms in the numerical flux. An investigation of the resulting
RKDG method was made, and it was verified that the scheme
maintains first- through fourth-order accuracy away from shocks
prior to their formation, provided that the mesh is sufficiently h-re-
fined in the shock vicinity; the theoretical convergence rates were
nearly attained in these cases.

Effects of h- and p-refinement were readily seen in the test
cases: numerical solutions appeared to converge to those with
the lowest values of h and highest values of p, with the highly-re-
fined approximations able to capture subgrid-scale features, espe-
cially in the transition regions near scour hole boundaries.
Moreover, it was observed that sufficient p-refinement (and to a
lesser extent, sufficient h-refinement) is necessary for the accurate
computation of sediment transport rates. That is, very low-order p
approximations resulted in artificially low sediment pick-up, even
with highly amplified transport formulæ, and the method ap-
peared to be too diffusive. This latter point must be emphasized:
since finite volume models are in fact equivalent to DG models
with p = 0, the numerical results in Section 4 suggest that FV-based
models can yield poorly-resolved sediment solutions.

Although it is clear that a three-dimensional model is required
to accurately resolve all the flow features around structures such as
bridge piers, it was discovered that this morphological model does
capture a surprising number of complex flow characteristics,
including those of the wake, scour hole shape and location, accre-
tion region, and points of flow separation.

Lastly, it was demonstrated that the use and selection of a slope
limiter plays a crucial role in improving the solution quality in
these cases. This was especially true for higher-order approxima-
tions, as its omission resulted in significant spurious oscillations
in the solution, and even instability in some extreme cases. Inclu-
sion of a higher-order slope limiter is therefore critically important
for DG morphological models which accommodate arbitrary-order
solution approximation.
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