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Using Boussinesq scaling for water waves while imposing no constraints on rotationality, we derive and test
model equations for nonlinear water wave transformation over varying depth. These use polynomial basis
functions to create velocity profiles which are inserted into the basic equations of motion keeping terms up
to the desired Boussinesq scaling order, and solved in a weighted residual sense. The models show rapid
convergence to exact solutions for linear dispersion, shoaling, and orbital velocities; however, properties
may be substantially improved for a given order of approximation using asymptotic rearrangements. This
improvement is accomplished using the large numbers of degrees of freedom inherent in the definitions
of the polynomial basis functions either to match additional terms in a Taylor series, or to minimize errors
over a range. Explicit coefficients are given at O(μ2) and O(μ4), while more generalized basis functions are
given at higher order. Nonlinear performance is somewhat more limited as, for reasons of complexity, we
only provide explicitly lower order nonlinear terms. Still, second order harmonics may remain good to
kh≈10 for O(μ4) equations. Numerical tests for wave transformation over a shoal show good agreement
with experiments. Future work will harness the full rotational performance of these systems by incorporat-
ing turbulent and viscous stresses into the equations, making them into surf zone models.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Modern Boussinesq water wave theory began in the 1960s as
moderate computing power became more available to researchers.
Papers by Peregrine (1967), and Madsen and Mei (1969) extended
the shallow water equations asymptotically into deeper water to ar-
rive at inviscid, nonlinear, wave evolution equations with leading
order dispersive effects. These were confined to relatively shallow
water, with μ≡k0h0b1.5, where k0 is a typical wavenumber and h0
is a typical water depth and so had a limited range of application.
However, even at these early stages it was realized that entire fami-
lies of equations could be developed that were asymptotically identi-
cal but had differing properties. With exceptions (Witting, 1984), this
finding was largely ignored until the early 1990s when several groups
of researchers (Madsen and Sørensen, 1992; Madsen et al., 1991;
Nwogu 1993) used various methods of asymptotic rearrangement
to improve properties of Boussinesq equations so that dispersion re-
lations were accurate to the nominal deep water limit of k0h0≈π. Fur-
ther work increased nonlinearity from the mildly nonlinear equations
that existed previously to so-called fully nonlinear equations with
considerably more accurate nonlinear properties (Kennedy et al.,
edy).

rights reserved.
2001; Madsen and Schäffer, 1998; Wei et al., 1995). Formal expan-
sions to higher order increased the accuracy of all properties (Gobbi
and Kirby, 1999; Gobbi et al., 2000; Madsen and Schäffer, 1998) but
at the cost of much more complex equations. Extensions to include
wave breaking and shorelines have made these into true surf zone
models able to represent waves and wave-induced currents including
wave setup, rip currents, and longshore currents (e.g. Bonneton et al.,
2011a; Chen et al., 2000; Kennedy et al., 2000a,b; Lynett., et al., 2002;
Nwogu and Demirbilek, 2010; Schäffer and Madsen, 1993; Sørensen
et al., 1998).

However, there were obstacles to this progress. It was discovered
(Kennedy and Kirby, 2002; Madsen and Agnon, 2003) that the basic
asymptotic series underlying the velocity structure was only
conditionally convergent, and diverged strongly for higher order
equations at moderate wavenumbers. This finding, along with the
highly complex nature of higher order equations, led to a stagnation
in some parts of Boussinesq theory. Partial solutions have been
found: convergent formulations of very high order have been de-
rived and tested (Lynett and Liu, 2004; Madsen and Agnon, 2003;
Schäffer, 2009); however, the extension of these irrotational formu-
lations to true rotational surf zone models has not been immediately
forthcoming. This partial or full irrotationality assumption for orbital
velocities is present in almost all Boussinesq models, and represents
a second obstacle to progress. While appropriate for nonbreaking
waves, these assumptions are strongly violated in the surf zone.
Again, this has been addressed on multiple occasions using
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irrotational/rotational decompositions with different scalings
(Musumeci et al., 2005; Shen, 2001; Veeramony and Svendsen
2000) but only at lower order, and often with vertical vorticity spec-
ified instead of arising naturally. None of these approaches has been
widely adopted, which is unfortunate as surf zone simulations
require the inclusion of vorticity to provide accurate reconstructions
of internal velocities.

Taken together, these limitations have hindered investigations
into processes like sediment transport, where Boussinesq models
had been expected to excel. Still, prediction of nonlinear water sur-
face elevations and bulk currents in and around the surf zone remains
good, and existing models are very useful.

An alternate but related approach to the computation of shallow
water nonlinear dispersive waves lies in the Green–Naghdi or Serre
approach (Bonneton et al., 2011a,b; Green and Naghdi, 1976; Serre,
1953; Shields and Webster, 1988). Here, a polynomial structure is
also retained for the velocity profile. In the original approach of
Green and Naghdi, no irrotationality constraint is applied, and no
scaling or perturbation parameters are used. A finite series of veloc-
ities is substituted into the mass and momentum equations and
solved in a weighted residual sense. Rotational Green–Naghdi equa-
tions have shown excellent nonlinear properties and very fast con-
vergence with increasing numbers of terms in the series (Shields
and Webster, 1988). However, their extreme complexity in addition
to their lack of formal asymptotic justification has meant that they
are rarely used at higher order: almost all implementations of
rotational Green–Naghdi theory have been at low levels of approxi-
mation (e.g. Ertekin et al., 1986). More recently, researchers have in-
troduced irrotational characteristics and scaling into Green–Naghdi
theory (e.g. Bonneton et al., 2011a,b; Lannes and Bonneton, 2009),
which brings it more in line with standard Boussinesq systems,
and recent advances have improved dispersion considerably
(Lannes and Bonneton, 2009). Again, these improvements tend to
be at O(μ2) although linear dispersion may be considerably more
accurate.

Alternate polynomial summation representations assuming irrota-
tional flow (Kennedy and Fenton, 1997; Kim et al., 2003) have no
difficulties with higher order series, and have demonstrated extremely
high accuracy with implementation to arbitrary order for nonbreaking
waves; however their fundamentally irrotational formulations preclude
even ad hoc extension to surf zones. Thus there remains considerable
opening for formulations incorporating vorticity that have good linear
and nonlinear properties.

Here, we derive and test systems of equations for nonlinear water
wave transformation. Like Green–Naghdi systems, we use polynomi-
al expansions (Shields and Webster, 1988), but also employ
Boussinesq scaling; however the present derivation is without the
partial or complete irrotationality assumption of most Boussinesq
systems so that rotational surf zone flows may be modeled naturally.
The systems may be extended to higher order and show excellent
convergence towards exact solutions for dispersion, shoaling, and
orbital velocities. The end results show a resemblance to both
Boussinesq and Green–Naghdi systems, and may be recast into dif-
ferent forms. Importantly, most of the asymptotic rearrangement
techniques used for Boussinesq models may also be employed here
to improve accuracy for given levels of approximation.

The present paper introduces these systems, examines their
properties, and provides introductory numerical results. For this
first paper, we concentrate only on inviscid properties and numeri-
cal tests and thus neglect the turbulent/viscous stresses which are
important in the surf and swash zones. These will prove to be essen-
tial in extending the applicability of themodel and taking advantage
of its rotational capabilities, but are best developed and evaluated in
separate publications. Future papers will thus extend the systems
developed here for surf zone use, and describe their detailed nu-
merical solution methods.
2. Scaling

Boussinesq-shallow water scaling for non-dimensional variables is:

x; yð Þ ¼ k0 x�; y�ð Þ; z ¼ h−1
0 z�; t ¼ k0 gh0ð Þ12 t�; h ¼ h−1

0 h�
; η ¼ h0ð Þ−1η�

P ¼ ρ�g0h0ð Þ−1P�
; g ¼ g−1

0 g�; u; vð Þ ¼ g0h0ð Þ−1=2 u�
; v�ð Þ; w ¼ k0h0ð Þ−1 g0hð Þ−1=2w�

ð2:1Þ

where the superscript * indicates a dimensional variable. Horizontal co-
ordinates are (x*,y*) and the vertical coordinate z∗ is oriented upward.
Time t* is scaled based on a long wave speed and wavelength, while
depth h* and surface elevation η* scale with typical water depth. The
pressure P* scales hydrostatically in longwave theory where g∗ is gravi-
tational acceleration. Horizontal and vertical fluid velocities (u*,v*,w*)
all scale with wave orbital velocities taken from shallow water theory.
There is an implicit assumption in this scaling that the wave may be
strongly nonlinear, although of course the system is also valid for
small amplitude waves.

Although this will be relaxed in the future, for the present paper
we will assume flow with no turbulent/viscous stresses. These stress-
es will be necessary for surf zone processes and for computation of
velocity profiles in steady flows, but are not necessary for the present
derivations and tests. We also note that the inclusion of viscous forces
will introduce another set of velocity and pressure scaling parameters
which will become important in some situations.

When inserted into the continuity equation, kinematic free sur-
face, and bottom boundary conditions, dimensionless equations be-
come

∇⋅uþ ∂w
∂z ¼ 0; −h≤z≤η ð2:2Þ

w ¼ −u⋅∇h; z ¼ −h ð2:3Þ

w ¼ ∂η
∂t þ u⋅∇η; z ¼ η ð2:4Þ

where∇≡(∂/∂x, ∂/∂y), u=(u,v). Integrating Eq. (2.2) from bottom to
surface and applying kinematic boundary conditions gives a mass
equation in conservation form,

∂η
∂t þ∇⋅∫η

−hudz ¼ 0 ð2:5Þ

The three dimensional momentum equations for incompressible,
inviscid fluid motion are

∂u
∂t þ u⋅∇uþw

∂u
∂z þ∇P ¼ 0 ð2:6Þ

μ2 ∂w
∂t þ μ2u⋅∇wþ μ2w

∂w
∂z þ ∂P

∂z þ g ¼ 0 ð2:7Þ

Integrating Eq. (2.7) from z to η , and assuming a zero gauge pres-
sure at the free surface, we find

P zð Þ ¼ μ2∫η
z
∂w
∂t dzþ μ2∫η

z u⋅∇wdzþ μ2∫η
z w

∂w
∂z dzþ g η−zð Þ ð2:8Þ

So far these equations are quite general. An implicit assumption
that both the free surface and bed have single-valued elevations is
shared by all Boussinesq-type and Green–Naghdi wave models. This
assumption is excellent outside the surf zone but may be strongly vi-
olated in the case of plunging breakers, which will have at least three
air-water interfaces on the plunging jet. Because of this, there will be



Table 1
Integral definitions used in this paper. All indefinite integrals will be assumed to have
integration constants defined to give values of 0 at q=0. Thus, for example, gn|0q=1=
gn|q=1.

gn=∫ fndq rn ¼ ∫f ′nqdq Gn=∫gndq
Rn=∫rndq ϕmn=∫ fmfndq γmn=∫ fmgndq
ρmn=∫ fmrndq Γmn=∫ fmGndq Θmn=∫ fmRndq
θmn=∫ fmgnqdq νm=∫q2fmdq Sm=∫qfmdq
εmn=∫ fmfnqdq Ψmn=∫ fmfnqdq Fmn=∫ fmrnqdq
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an upper limit to accuracy imposed by the single valued assumption.
This must be kept in mind as the derivation proceeds: at some point
(where is not entirely clear) an increasing level of approximation
will cease to bring a commensurate increase in accuracy once the
surf zone is encountered. For this reason, moderate levels of approx-
imation may prove to be the optimal combination of accuracy and ef-
ficiency for some problems.

2.1. Velocity expansion

Classical Boussinesq theory assumes a polynomial expansion for
the horizontal velocity

u ¼
X∞
n¼0

ũn x; y; tð Þ zþ hð Þn ð2:9Þ

where the infinite series is in practice truncated to a desired level of
approximation. When substituted into the continuity Eq. (2.2), bot-
tom boundary condition (2.3), and a partial irrotationality condition
(which will not be used here), the lowest order solution corresponds
to the bottom velocity, ũ0. Successive recursions then give higher
order horizontal and vertical velocity components as higher deriva-
tives of the bottom velocity, ũ0. As Boussinesq equations based on
the bottom velocity have poor properties, these may be asymptotical-
ly rearranged into other forms: for example the velocity formulation
of Nwogu (1993) has, in the present scaling,

u ¼ uα þ μ2 zα−zð Þ∇ ∇⋅ huαð Þð Þ þ μ2 z2α
2
− z2

2

 !
∇ ∇⋅uαð Þ þ O μ4

� �
ð2:10Þ

where the new reference velocity uα is defined at z=zα(x,y,t). With
the usual definition of zα≡Ĉh; ,where Ĉ is a free constant of O(1),
the horizontal velocity may be reduced to

u ¼ uα
z}|{û0

þ μ2
z}|{μβ1 �

Ĉ þ 1
� �

− zþ h
h

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f̂ 1

h ∇ h∇⋅uαð Þ þ∇ uα⋅∇hð Þ½ �Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{û1

þ μ2
z}|{μβ2

1
2

Ĉ þ 1
� �2− zþ h

h

� �2� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f̂ 2

h2∇ ∇⋅uαð Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{û2

þ O μ4
� �

¼
XN
n¼0

μβn ûn xð Þf̂ n ð2:11Þ

where, for consistency with Nwogu N=2, but this representation
could be generalized to any even number for an O(μ4) or higher
order velocity field. The velocity scaling βn=n when n is even, and
n+1 when n is odd. The polynomial functions f̂ n are functions of
(z+h)/h, include components up to ((z+h)/h)n, and thus the poly-
nomial degree increases with n. Polynomial coefficients and velocities
ûn arise from two sources: (1) the definition of the reference eleva-
tion, zα, and (2) the combination of irrotationality, continuity and
bottom boundary conditions that allow higher order velocities to be
represented as functions of lowest order velocity, uα.

There is one further useful rearrangement here: if we define the
reference elevation to be a constant fraction of the total water
depth, i.e. zα ¼ −hþ Ĉ þ 1

� �
hþ ηð Þ; the reference elevation will

have no dependence on the definition of the zero datum and tide
level, which is a useful property (e.g. Kennedy et al., 2001). This
may be represented more naturally by the vertical coordinate
q≡(z+h)/(h+η) and thusqα≡ zα þ hð Þ= hþ ηð Þ ¼ Ĉ þ 1: This q is a co-
ordinate that varies between zero at the bed and one at the free
surface, and is simply a sigma coordinate plus one. With these defini-
tions, Nwogu's velocities become

u ¼ uα
z}|{û0

þ μ2
z}|{μβ1

qα−qð Þ
zfflfflfflffl}|fflfflfflffl{f 1

hþ ηð Þ ∇ h∇⋅uαð Þ þ∇ uα⋅∇hð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{u1

þ μ2
z}|{μβ2

1
2

q2α−q2
� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{f 2

hþ ηð Þ2∇ ∇⋅uαð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{u2

þ O μ4
� �

ð2:12Þ

u ¼
XN
n¼0

μβnun xð Þf n ð2:13Þ

In the derivations to follow, we wish to be able to represent rota-
tional flows and thus abandon irrotationality. Thus, we will define ve-
locities using Eq. (2.13) and with arbitrary even N (which will
produce a system complete up to O(μN)); however, unlike Nwogu,
all horizontal velocities u0, u1,…, uN are independent, which is a fun-
damental difference between irrotational and rotational flows. Final-
ly, we allow arbitrary constants for polynomial coefficients. To ensure
a consistent solution that is in accordance with Boussinesq scaling,
polynomial functions fn(q) must have the form fn=∑m=0

n anmq
m,

where anm are real constants with ann≠0. It is assumed without
loss of generality that f0=1. Specification of both the order of approx-
imation, O(μN), and the polynomial coefficients, anm, will define the
specific systems once substituted into the mass and momentum
equations. In particular, different choices of anm will yield different
wave properties through asymptotic rearrangement in a manner
that is like the change in properties given by using different reference
velocities in Nwogu (1993).

These decoupled velocities form the basis of rotational Green–
Naghdi type systems, and immediately lead to major differences since
higher order velocity components are not defined in terms of lower
order components. The vertical velocity, w, is then uniquely specified
from the continuity equation and bottom boundary condition as

w ¼
XN
n¼0

μβn − ∇⋅unð Þ hþ ηð Þgn þ un⋅∇ hþ ηð Þð Þrn− un⋅∇hð Þf n½ � ð14Þ

where gn and rn are integral functions of fn, e.g. gn≡∫ fn(q)dq, with
many other functions defined in Table 1. All integrals have constant of
integration defined such that gn|q=0=0 and thus gn|0q=1=gn|q=1.
The velocity expansions are inserted into the mass and momentum
equations and terms are kept or discarded according to the assumed
order of approximation, O(μN). It should be noted that the definitions
of basis functions will thus influence the form of the velocities here in
the same way as the definition of zα affects velocities in Nwogu's
equations. This influence carries over into the dynamical systems,
where entire families of equations may be developed that are asymp-
totically identical to the order of approximation, but have different
overall properties.

3. Boussinesq–Green–Naghdi Water Wave Systems

Given scaled initial velocity fields, surface elevation defined over
the entire fluid domain, and a desired level of approximation, the
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only equations left to be satisfied are the free surface evolution
Eq. (2.5), the momentum Eq. (2.6), and the pressure Eq. (2.8). For
all systems, generalities of the solution method are the same, but de-
tails will differ according to the level of approximation and basis func-
tions chosen.

1. Define a desired level of wave approximation, O(μN),
2. Insert velocity field into free surface evolution Eq. (2.5), retaining

all terms to specified level of approximation, and discarding all
terms that are formally O(μN+2) or higher.

3. Insert velocity field into pressure Eq. (2.8), retaining all terms to
specified level of approximation, and discarding all terms that are
formally small.

4. Insert velocity field and expression for pressure into horizontal
momentum Eq. (2.6), retaining all terms to specified level of ap-
proximation, and discarding all terms that are formally small. Inte-
grate in weighted residual sense as shown in Eq. (3.1) using the
N+1 basis functions as weights.

∫η
−h f m

∂u
∂t þ u⋅∇uþw

∂u
∂z þ∇P

� �
dz ¼ 0; m ¼ 0;N½ � ð3:1Þ

These systemswill, depending on the level of approximation, be able
to represent many linear and nonlinear water wave phenomena in
depths that are not too large. Unlike standard Boussinesq expansions,
rotational processes are included and evolve naturally once turbulent
stresses are specified (although they will not be included in this
introductory paper). As will be shown, the systems resemble coupled
lower order Boussinesq equations, and nomixed space/time derivatives
higher than un,xxt will appear, no matter the level of approximation.
Although we do not have explicit proofs, the systems appear to
converge with increasing order of approximation and do not exhibit
the divergence for finite wavenumbers found in many Boussinesq
expansions (Kennedy and Kirby, 2002; Madsen and Agnon, 2003).
Computational cost for lower order systems will be comparable to
existing Boussinesq equations, but higher order systems will of course
be more expensive.

Perhaps most importantly, the systems may employ asymptotic
rearrangement through the specification of polynomial basis func-
tions fn. In this, we may build upon the past decades of experience
to produce systems of equations with highly accurate linear disper-
sion and shoaling relations but a relatively low order of formal
approximation.

3.1. O(μ2) Equations

The lowest level of dispersive approximation is to O(μ2) and thus
N=2. This is further the only level that can be easily derived and
coded by hand including all nonlinearities. For all levels of ap-
proximation we can without loss of generality define f0=1. The
Boussinesq-scaled velocity field is then

u ¼ u0 þ μ2u1f 1 þ μ2u2f 2 þ O μ4
� �

w ¼ −∇⋅u0 ηþ hð Þq−u0⋅∇hþ O μ2
� � ð3:2Þ

It should be noted that here we do not need to include O(μ2) terms
in the vertical velocity as all terms in the pressure and momentum
equations where w appears are already at minimum O(μ2), and so
any higher order vertical velocity terms in Eq. (3.2) would be
discarded from the final equations.
Insertion of the velocity field (Eq. (3.2)) into the free surface evo-
lution equation immediately gives

η;t þ∇⋅
�
u0 ηþ hð Þ þ μ2X2

n¼1

un ηþ hð Þgn q¼1

��� �
¼ 0 ð3:3Þ

where we again see the integral gn≡∫ fn(q)dq. Thus, definition of fn
affects the form of the mass equation through integrals. This type of de-
pendency will be found in many other places, and the various integrals
are defined in Table 1. Note that these integrals evaluated at q=1
(free surface) are simply numbers that may be precomputed easily
and exactly and stored for lookup when necessary.

Insertion of the velocity field into the pressure Eq. (2.8) and inte-
gration gives

P zð Þ ¼ g η−zð Þ−μ2 ∇⋅u0;t

� �
ηþ hð Þ2 1−q2

2
þ u0;t⋅∇h ηþ hð Þ 1−qð Þ

 !

þ μ2

2
ηþ hð Þ2 ∇⋅u0ð Þ2−u0⋅∇ ∇⋅u0ð Þ

h i
1−q2
� �

−μ2 ηþ hð Þu0⋅∇ u0⋅∇hð Þ 1−qð Þ
ð3:4Þ

Note that at this level of approximation, only u0 appears in the
nonhydrostatic pressure corrections, and particularly, in the mixed
u0,xt terms. Higher order velocity terms u1 and u2 will appear in the
mass and momentum equations but do not affect pressure here.

Insertion of Eq. (3.4) into the depth-integrated, weighted momen-
tum Eq. (3.1) then gives, keeping all terms to O(μ2),

u0;t ηþ hð Þgmjq ¼ 1þ u0⋅∇u0 ηþ hð Þgmjq ¼ 1þ g∇η ηþ hð Þgmjq ¼ 1

þμ2
X2
n¼1

un;t ηþ hð Þϕmn−unη;tεmn

� �
jq ¼ 1

−μ2½1
2
∇ ∇⋅u0;t

� �
ηþ hð Þ3 gm−νmð Þ þ ∇⋅u0;t

� �
ηþ hð Þ2∇ ηþ hð Þgm

þ∇ u0;t⋅∇h
� �

ηþ hð Þ2 gm−Smð Þ þ u0;t⋅∇h∇η ηþ hð Þgm

− ∇⋅u0;t

� �
ηþ hð Þ2∇hSm�jq ¼ 1

þμ2X2
n¼1

un⋅∇u0 þ u0⋅∇unð Þ ηþ hð Þϕmn−un∇⋅ u0 ηþ hð Þð Þεmn½ �jq ¼ 1

þμ2 ηþ hð Þ2 ∇⋅u0ð Þ2−u0⋅∇ ∇⋅u0ð Þ
h i

∇ηgm þ∇h gm−Smð Þð Þjq ¼ 1

þ μ2

2
ηþ hð Þ3∇ ∇⋅u0ð Þ2−u0⋅∇ ∇⋅u0ð Þ

h i
gm−νmð Þjq ¼ 1

−μ2 ηþ hð Þ∇ηu0⋅∇ u0⋅∇hð Þgmjq ¼ 1

−μ2 ηþ hð Þ2∇ u0⋅∇ u0⋅∇hð Þð Þ gm−Smð Þ q¼1 ¼ 0; m ¼ 0;1;2
���

ð3:5Þ

Although the mass equation is explicit, the three coupled momen-
tum equations would seem to need to be solved simultaneously for
u0,t, u1,t, and u2,t, which would increase the computational cost. How-
ever, if it is realized that mixed space-time derivatives only occur for
u0 (i.e. u0,xxt and related terms), this may easily be reduced to a form
where u0,t and its mixed derivatives are the only unknowns. To do
this, u1,t and u2,t must be eliminated from one momentum equation,
say m=0. The basic form of the equation will not change, but the in-
tegrals will. If we define g̃0≡ g0−d0g1−e0g2ð Þ q¼1;

�� where

d0 ¼ ϕ01ϕ22−ϕ21ϕ02

ϕ11ϕ22−ϕ12ϕ21

e0 ¼ ϕ11ϕ02−ϕ01ϕ12

ϕ11ϕ22−ϕ12ϕ21

ð3:6Þ
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replacement of g0 with g̃ and equivalently for all other integrals
(e.g. ε0n is replaced with ε̃0n) will result in a replacement equation
form=0 that does not contain u1,t or u2,t terms. This will be in the stan-
dardO(μ2) Boussinesq form andmay be arranged into a tridiagonalma-
trix for 1D to solve for u0,t usingmethods that arewell known. Velocities
u1,t and u2,t will in many numerical representations then be solvable
purely locally as the solution of a 2×2matrix, which is straightforward.

In summary, the three momentum Eq. (3.5) should be modified as
follows to increase computational efficiency

1. For the m=0 equation, replace all integrals (−) with (−). This
will eliminate all u1,t and u2,t terms, and the revised equation
may then be solved for u0,t independently of the other equations,

2. Using the m=1,2 momentum equations and with known u0,t,
solve for u1,t, and u2,t.

It is also very important to note that, if shifted Legendre polynomi-
al basis functions are used, fn(q)=Pn

∗(q), this procedure becomes un-
necessary as their excellent orthogonality properties mean that
∫0

1 fmfndq=0, m≠n and thus un,tϕmn|q=1 terms only appear on the
diagonal in momentum equation n. However, at O(μ2) shifted Legen-
dre polynomials are probably not the best solution as their dispersion
is not as accurate as might be desired.

3.2. O(μ4) and Higher Order Equations

Conceptually, higher order equations are straightforward to devel-
op, but are in practice quite complex. Here, we derive and examine
O(μ4) and higher order equations, but with full nonlinearity only up
to O(μ2). Because of the very great complexity, terms at higher orders
will be linearized only. Thus, they will look like the nonlinear O(μ2)
equations of the previous section, with additional higher order linear
terms. This is an approximation that will limit nonlinear applicability
in deeper waters, but should give good nonlinear results in shallower
waters and, in particular, should give quite accurate velocity profiles.
In practice it may be possible to include all nonlinearities, but these
would need to be generated through numerical summations rather
than analytical expressions.

The conservation of mass equation requires little change.

η;t þ∇⋅
�
u0 ηþ hð Þ þ μ2X2

n¼1

un ηþ hð Þgnjq ¼ 1þ
XN
n¼3

μβnunhgnjq ¼ 1Þ ¼ 0 ð3:7Þ

The integrated conservation of momentum equations are

u0;t ηþ hð Þ þ u0⋅∇u0 ηþ hð Þ þ g∇η ηþ hð Þ
� �

gmjq ¼ 1þ μ2 ⋯ð Þ

þ
XN
n¼3

μβnhun;tϕmnjq ¼ 1

−
XN−2

n¼1

μβn ½h∇ h2∇⋅un;t

� �
Gnjq ¼ 1gmjq ¼ 1−Γmnjq ¼ 1ð Þ

−h2∇⋅un;t∇h
�
γmnjq ¼ 1−θmnjq ¼ 1

�
þh∇ h un;t⋅∇h

� �� �
gn−Rnð Þjq ¼ 1gmjq ¼ 1−γmnjq ¼ 1þ Θmnjq ¼ 1ð Þ

þh un;t⋅∇h
� �

∇hðρmnjq ¼ 1−Fmnjq ¼ 1−ϕmnjq ¼ 1

þΨmnjq ¼ 1Þ� ¼ 0; m ¼ 0;N½ �

ð3:8Þ

where μ2(⋯) is shorthand for all O(μ2) terms in Eq. (3.5). These equa-
tions will thus provide the same level of nonlinear approximation as
the fully nonlinear O(μ2) equations while providing a higher level of
linear approximation, which is important for dispersion, shoaling,
and orbital velocities.

Similarly to the process for N=2, it is possible in higher orders to
reduce the number of weighted momentum equations that must be
solved simultaneously by eliminating uN−1,t and uN,t from weighted
momentum equations m=(0,N−2) through partial Gaussian elimi-
nation using momentum equations m=(N−1,N). The remaining
N-1 equations may be solved for u0,t to uN−2,t, and the results may
then be used to solve for uN−1,t and uN,t using momentum equations
m=(N−1,N). Again, this is possible because mixed space-time de-
rivatives do not appear in the weighted momentum equations for
n=[N−1,N]. We will not give details, but the process is very similar
to that in Eq. (3.6), except that new coefficients must be found for
each equation in m=(0,N−2).

4. Linear properties to very high order

Although nonlinear equations for arbitrary order are long and dif-
ficult to write explicitly, it is straightforward to examine linear prop-
erties to high order and how they may vary with different choices of
basis functions, fn(q). Both linear dispersion and shoaling are found
from the first two orders of a multiple scales expansion, with the lin-
ear dispersion found at first order and the shoaling properties at sec-
ond order. These follow standard, but long, procedures which are
detailed in Appendix A.

4.1. Dispersion and orbital velocities

4.1.1. Dispersion
For a given set of basis functions fn(q), which define integrals gn,

etc., dispersion with changing wavenumber is the most basic linear
property. The relationship of orbital velocities to surface elevation
also appears as part of the solution for dispersion, and both may be
compared to well-known linear hyperbolic solutions (e.g., Dean and
Dalrymple, 1991). For a given order of approximation, say O(μN), all
valid choices for fn(q) will yield asymptotic behavior that is also accu-
rate to O(μN) but, like Boussinesq theory, these may be rearranged
into forms that are formally more accurate asymptotically, or have
other properties that are more useful such as behavior at high
wavenumbers. As complexity increases strongly with increasing
order, examining general asymptotic rearrangements is simple for
O(μ2), difficult for O(μ4), and a practical impossibility at higher
order. However, we may still examine properties at high order for
specific sets of basis functions. For comparison, we will use two spe-
cific sets of basis functions: simple monomials fn≡qn, and shifted Le-
gendre basis functions fn≡Pn

∗(q). The use of monomials is obvious,
while shifted Legendre basis functions are orthogonal over the
range q=[0,1], and this orthogonality means that many integrals
are simplified or zero (Abramowitz and Stegun, 1964). An explicit
generation equation is

P�
n qð Þ ¼ −1ð Þn

Xn
k¼0

qk
n!

k! n−kð Þ!
nþ kð Þ!
k!n!

−1ð Þk ð4:1Þ

Fig. 1 shows linear dispersion for orders of approximation
O(μ2,μ4,μ6,μ8) for both monomial and shifted Legendgre basis func-
tions. When compared to exact linear dispersion of CSt

2 =ω2/k2=
ghtanh(kh)/kh, a clear increase in accuracy is seen for both sets of
basis functions with increasing level of approximation. For shifted Le-
gendre basis functions, phase speeds have several percent error by
kh=1.5 at O(μ2), while O(μ4) remains good until at least kh=6. By
O(μ6), accuracy extends to kh=15, while the highest level of approx-
imation, O(μ8), has accuracy extending past kh=20. Since the nomi-
nal deep water limit for water waves is kh=π, these higher levels of
approximation are very accurate.

These may be compared to dispersion results for the simplest pos-
sible basis functions, fn≡qn. For the lowest O(μ2) solution, accuracy
between Pn and qn dispersion is comparable, but for all higher orders
of approximation qn basis functions give much less accurate results.
Because we also expect equations using qn basis functions to have
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problems with numerical conditioning, we will thus disregard them
and use Pn

∗ as default basis hereinafter.
With the aid of the symbolic manipulation software package

Maple, analytical representations may be found for phase speeds. At
O(μ2), the phase speed using shifted Legendre basis functions is

C2

gh
¼ 1

1þ 1
3 khð Þ2 ð4:2Þ

which is accurate to O((kh)2), and is the same as is found for
Peregrine's depth-averaged Boussinesq equations, and for Green–
Naghdi level I theory (Shields and Webster, 1988). At O(μ4) using
shifted Legendre basis functions, dispersion becomes

C2

gh
¼ 1þ 13

105 khð Þ2 þ 1
420 khð Þ4

1þ 16
35 khð Þ2 þ 3

140 khð Þ4 þ 1
6300 kh6
� 	 ð4:3Þ

which is identical to Green–Naghdi theory III (Shields and
Webster, 1988) and is accurate to O((kh)6), which is more accurate
than the underlying O(μ4) expansion.

For the shifted Legendre polynomial basis functions, the disper-
sion relation at O(μ6) will be

C2

gh
¼ 1þ 14

99 khð Þ2 þ 373
83160 khð Þ4 þ 1

22680 khð Þ6 þ 1
7983360 khð Þ8

1þ 47
99 khð Þ2 þ 163

5544 khð Þ4 þ 16
31185 khð Þ6 þ 67

23950080 khð Þ8 þ 1
279417600 khð Þ10

ð4:4Þ

which is asymptotically accurate to O((kh)10). The dispersion relation
at O(μ8) will be

C2

gh
¼ 1þ 29

195 khð Þ2 þ 71
12870 khð Þ4 þ 674

8783775 khð Þ6 þ 761
1686484800 khð Þ8 þ 61

55653998400 khð Þ10 þ 1
1113079968000 khð Þ12

1þ 94
195 khð Þ2 þ 47

1430 khð Þ4 þ 73
100386 khð Þ6 þ 1003

153316800 khð Þ8 þ 29
1159458300 khð Þ10 þ 41

1113079968000 khð Þ12 þ 1
70124037984000 khð Þ14

ð4:5Þ

which is asymptotically accurate to O((kh)14).
Thus it becomes clear that using the shifted Legendre polynomials

provides dispersion accuracy to O((kh)2N−2). For all levels greater
than O(μ2), this is a formal increase in accuracy beyond the nominal
order of approximation, and results from the excellent orthogonality
of the polynomials. In contrast, simple monomials only provide accu-
racy in dispersion to O((kh)N), which explains the great difference
seen in Fig. 1.

4.1.2. Dispersion with generalized basis functions
For lower order systems, it is possible to arrive at dispersion re-

sults for generalized basis functions. If we define the most general
polynomial system that satisfies Boussinesq scaling, but making
sure that the coefficient of highest degree for each basis function is
one (which does not imply loss of generality as properties are invari-
ant with respect to a multiplicative constant),

f 0 ¼ 1
f 1 ¼ aþ q
f 2 ¼ bþ cqþ q2

f 3 ¼ dþ eqþ f q2 þ q3

f 4 ¼ g þ hqþ iq2 þ jq3 þ q4

ð4:6Þ

then the general dispersion relation for an O(μ2) system with any
choice of (a,b,c) will be

C2

gh
¼ 1þ 1

6 þ 1
2 b−acð Þð Þ khð Þ2

1þ 1
2 þ 1

2 b−acð Þð Þ khð Þ2 ð4:7Þ

Thus, although there appear to be three free coefficients, only one
combination has any influence on dispersion at O(μ2). For the shifted
Legendre polynomial basis functions (suitably normalized so that the
coefficient of the highest degree polynomial in each basis function is
unity), we find b−ac=−1/3, while to arrive at the Padé [2,2]
approximant as seen in Fig. 1 (Madsen et al., 1991)

C2

gh
¼ 1þ 1

15 khð Þ2
1þ 2

5 khð Þ2 ð4:8Þ

we set b−ac=−1/5. For the simple monomial basis functions
fn=qn, we find that b−ac=0 which does not yield accurate
dispersion.
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Although the choice of b-ac still leaves ambiguity in the choice of
optimal basis functions, shoaling analyses will help to resolve choices
of additional coefficients.

Similarly, we can get the general dispersion relation for an O(μ4)
system. Instead of having one free parameter, it will vary based on
four independent parameters:

G1 ¼ f j−i−2e
G2 ¼ f h−eiþ 3 dj−gð Þ
G3 ¼ e g þ i

3
þ j
4
þ 1
5

� �
−h dþ f

3
þ 1
4

� �
G4 ¼ e g þ iþ jþ 1ð Þ−h dþ f þ 1ð Þ

ð4:9Þ

The general dispersion relation will then be

C2

gh
¼ 1þ A1 khð Þ2 þ A2 khð Þ4 þ A3 khð Þ6

1þ A4 khð Þ2 þ A5 khð Þ4 þ A6 khð Þ6 ð4:10Þ

where

A1 ¼ 1
6
−G1

12
A2 ¼ 1

120
−G1 þ G2

72
A3 ¼ G3

144
A4 ¼ 1

2
−G1

12
A5 ¼ 1

24
−G1

24
−G2

72
A6 ¼ G4

144

ð4:11Þ
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Note that (a, b, c) do not appear in the system. The four free pa-
rameters G1−G4 may then be manipulated to improve dispersion
properties. To achieve the Padé [4,4] approximant of

1þ 1
9 khð Þ2 þ 1

945 khð ÞÞ
1þ 4

9 khð Þ2 þ 1
63 khð Þ4 ð4:12Þ

which is accurate to O(kh8), we set G1=2/3, G2=−1/7, G3=0, G4=
0. In order to arrive at the Padé [6,6] approximant (which is accurate
to O((kh)12)):

C2

gh
¼ 1þ 5

39 khð Þ2 þ 2
715 khð Þ4 þ 1

135135 khð Þ6
1þ 6

13 khð Þ2 þ 10
429 khð Þ4 þ 4

19305 khð Þ6 ð4:13Þ

we choose G1=6/13, G2=−9/143, G3=16/15015, G4=64/2145.
Thus, there are many basis functions that could give other relations
within the context of Eq. (4.10) as desired. Both of the Padé
approximants at O(μ4) provide significantly improved dispersion
when compared to the Shifted Legendre polynomials, with accuracy
potentially increasing from kh=6 to kh>10. These should also im-
prove significantly short wavelength results.

It should be noted that both the O(μ2) equations with Padé [2,2]
dispersion and the O(μ4) equations with Padé [6,6] dispersion still
have free coefficients which may be used to simultaneously optimize
dispersion and shoaling in the next section. Higher order μ6 and μ8

equations will also have free coefficients that may be used to optimize
properties, but the systems become extremely complex. Additionally,
the accuracy from using shifted Legendre polynomials is so great at
these levels that additional manipulation seems unnecessary.

4.1.3. Orbital velocities
In addition to wave speeds, orbital velocities can be extremely im-

portant. Figs. 2–3 show magnitudes of horizontal and vertical
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velocities for shifted Legendre basis functions compared to exact so-
lutions (Dean and Dalrymple, 1991). All levels of approximation
show good results for small wavenumbers kh=1, with O(μ2) rela-
tions losing accuracy by kh=3, O(μ4) results beginning to lose
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Fig. 4. (a) Shoaling gradients; and (b) Integrated shoaling amplitudes from shallow to deep
using shifted Legendre basis functions. O(μ2,μ4,μ6,μ8). (red) Exact solutions. (For interpretati
sion of this article.)
accuracy by kh=7, O(μ6) systems beginning to lose accuracy by
kh=15, and O(μ8) velocities showing good agreement with exact
results all the way up to kh=17. Again, these are quite good and in
line with dispersion relations. Importantly, both horizontal and
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vertical orbital velocities show convergence with increasing order of
approximation, unlike straightforward Boussinesq expansions that
diverge for moderate wavenumbers (Kennedy and Kirby, 2002;
Madsen and Agnon, 2003). This convergence provides further evi-
dence of the utility for this method and provides increased confidence
in internal velocities once turbulent/viscous stresses are added to the
model.

However velocities are not perfect, and inspection of Fig. 2 shows
that the horizontal bottom velocity, which is of utmost importance
for sediment transport and determination of frictional stresses, actu-
ally shows the wrong sign for very high wavenumbers, and is oppo-
site the direction of the surface velocity. This gives another measure
of the accuracy limits for each order of approximation, and the
changeover wavenumbers from positive to negative bottom velocity
comes at kh=(2.45,5.09,7.73,10.38) for O(μ2,μ4,μ6,μ8), respectively.
In comparison, the changeover wavenumber for Nwogu's (1993)
O(μ2) Boussinesq equations with zα=−0.553h (resulting in Padé
[2,2] dispersion), is kh ¼

ffiffiffiffiffiffi
10

p
≈3:16:

4.2. Shoaling

Fig. 4a compares approximate and exact shoaling gradients for
shifted Legendre basis functions for O(μ2,μ4,μ6,μ8). These follow a
very similar progression to the linear dispersion relations of Fig. 1,
as might be expected. Higher order μ8 shoaling is again extremely ac-
curate up to very high wavenumbers with lower order systems de-
creasing in accuracy. It should be noted that all errors in shoaling
gradient are negative — i.e., any cumulative shoaling errors for a
wave traveling from deep to shallow water would tend to make it
too small rather than too large. This is preferred for numerical and
stability reasons. This cumulative shoaling error may be quantified
by integrating the shoaling gradient from deep to shallow water as
in Chen and Liu (1995) to get

η 0ð Þ

ηSt
¼ exp ∫kh

0

γh kh′
� �

−γB kh′
� �

kh′
� 	 d kh′

� �2
4

3
5 ð4:14Þ
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Fig. 5. (a) Shoaling gradients; and (b) Integrated shoaling amplitudes from shallow to deep w
(solid line) Exact solutions; (Long Dash) Taylor series match with a=−2/5; ( Dash-Dot) Infi
[0,4] with a=−0.432.
where γB is the approximate shoaling gradient. This is shown in
Fig. 4b, and demonstrates a similar range of applicability, with O(μ2)
equations losing accuracy by kh≈2, while O(μ8) equations are again
showing only a few percent error by kh=20.

4.2.1. Shoaling with optimized coefficients
Shoaling gradients may also be optimized using generalized basis

functions. For O(μ2) equations, and using b−ac=−1/5 to achieve
Padé [2,2] dispersion, the associated shoaling relation is

γh ¼ −1=4
84þ 200að Þ khð Þ8 þ 490þ 1000að Þ khð Þ6 þ 3150þ 7500að Þ khð Þ4−4125 khð Þ2 þ 5625

75þ 10 khð Þ2 þ 2 khð Þ4
� �2

ð4:15Þ

Its Taylor series expansion will be:

γh ¼ −1=4þ 1=4 khð Þ2 þ −17
90

−1=3 a
� �

khð Þ4 þ O μ6
� �

ð4:16Þ

To match the Taylor expansion of the exact solution at O(μ4),

γh ¼ −1=4þ 1=4 khð Þ2−1=18 khð Þ4 þ O μ6
� �

ð4:17Þ

a=−2/5. This is shown in Fig. 5 and compared to the exact linear
solution.

However, matching Taylor series coefficients is not the only way
to optimize shoaling. By setting a=−21/50, shoaling gradients
may be matched for infinite depths: that is to say, the deep water
shoaling gradient will be identically zero. This gives slightly higher
error at lower wavenumbers, but the integrated error remains rela-
tively small even in extremely deep water. A third optimization
method is to minimize the squared error between exact shoaling
and approximate amplitudes over a range, say kh=[0,4]. This results
in a=−0.432, which is seen in Fig. 5 to give good agreement over
the useful range of the approximation.

We have still not set the precise basis functions as we only have
two constraints, but three free coefficients, a,b,c. Indeed, no third
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constraint appears possible as because any set of linear combinations
of basis functions can be made with only two constraints by adding
multiples of function f1 to f2. Because of this, any set of a,b,c at O(μ2)
satisfying the two constraints should yield identical properties over-
all, not just for linear dispersion and shoaling. For these reasons, we
arbitrarily set c=0, which then fixes a and b. Values for coefficients
in the optimized basis functions are given in Table 2 for Padé [2,2] dis-
persion and all shoaling optimizations.

As can be expected, optimization of shoaling becomes much more
complex for higher order equations. Here, we have not attempted a
completely general shoaling analysis at O(μ4), as this quickly became
too complex. Instead, we perform shoaling optimization for Padé [6,6]
dispersion, which is the most accurate possible for these O(μ4) equa-
tions. As shown in Section 4.1.2, this requires four constraints on pa-
rameters G1 to G4, leaving additional degrees of freedom.

Once dispersion constraints are specified, only two new combina-
tions of variables affect shoaling performance: G5=e, and G6=ej−h.
As with the O(μ2) equations, we offer two possibilities for shoaling
optimization: (i) equating as many terms in the Taylor series of
(A.16) using free coefficients G5−G6; and (ii) minimizing integrated
error compared using Eq. (4.14) over the range kh=[0,10].

As seen in Fig. 6, shoaling performance becomes considerably im-
proved with the Padé [6,6] dispersion and shoaling constraints when
compared to shifted Legendre basis functions. While the O(μ4) shifted
Legendre performance is already accurate to the deep water limit of
kh=π, the Taylor series match to O(μ8) improves agreement until
kh=6, which nearly doubles its region of accuracy. Optimizing the
shoaling coefficients over the range kh=[0,10] increases error slight-
ly for lower wavenumbers but allows for shoaling with maximum
possible errors of only a few percent all the way to kh=20, which is
excellent. Thus, the optimization can give good dispersion and
shoaling performance for O(μ4) systems well beyond the depth
range where these models are likely to be used.

These optimizations still do not specify uniquely the O(μ4) basis
function coefficients. To do this, we will wait until the next section,
when nonlinear properties may be used to further optimize perfor-
mance and produce additional constraints.

5. Nonlinear properties

Nonlinear properties provide an additional test of accuracy for
these systems, and are potentially another source of basis function
optimization. Second harmonics for a steady wave are the most
basic test, and tend to give the trend for properties at higher order.
These may be examined using standard nonlinear expansions
(Kennedy et al., 2001; Madsen and Schäffer, 1998; Nwogu, 1993),
where η=η (0)+ 2η(1)+…, where is a nonlinear amplitude expan-
sion parameter. At lowest order, this expansion provides linear
dispersion as in the previous sections and gives the relationship be-
tween surface elevations and velocities. The second order equations,
however, are different from the shoaling analysis, and will give
Table 2
Recommended basis function coefficients for optimized dispersion and shoaling.

Coefficient O(μ2) with Padé [2,2]
dispersion, Low shoaling
error, kh=[0,4]

O(μ4) with Padé [6,6] dispersion, Low
shoaling error, second harmonic error,
kh=[0,10]

a −0.432 −0.03
b −1/5 0.135
c 0 0
d −0.07332106862
e 0.72
f −1.607627232
g −0.1314065934
h 1.136
i −1.901538462
j 0
second surface harmonics and modifications to orbital velocities. Sec-
ond harmonics may be compared with exact second order Stokes
wave harmonics (e.g. Dean and Dalrymple, 1991). Because nonlinear
equations of arbitrary order are outside the scope of this paper, we
only include nonlinear terms up to O(μ2). We will consider levels of
dispersion O(μ2) and O(μ4). These give four systems of equations
which may also be optimized using different basis functions if de-
sired. Details of the expansion techniques are again standard, and
are given in Appendix B.

At O(μ4) and higher when using O(μ2) nonlinearity, the possibility
exists for further optimization of nonlinear harmonics. Here, the coef-
ficient groups b-ac and a appear in second order equations even
though they have no influence on linear properties at O(μ4) or higher.
These coefficients may be used to improve the performance of second
order harmonics, either by matching Taylor series coefficients, or by
optimizing performance over a range. As with shoaling, we have
taken two approaches to this optimization: the two free coefficients
were used either to (i) equate the next two terms in the Taylor series
of second harmonics to the exact Stokes values; or (ii) manipulate co-
efficients to produce small errors over a specified range. Because of
the great complexity of the dispersion, shoaling and second order
nonlinear equations for high order equations, this nonlinear optimi-
zation was only performed at O(μ4). Multiple sets of coefficients
were found for Taylor series matches arising from the multiple roots
in quadratic and higher order equations. Despite having the same
Taylor series matches, these different roots could give quite different
properties.

Fig. 7 shows second harmonics compared to exact Stokes solutions
(Dean and Dalrymple, 1991) for numerous basis functions at O(μ2)
and O(μ4). While shifted Legendre basis functions at O(μ2) show a
monotonic decrease in nonlinearity when compared to exact solu-
tions and have errors in the second harmonic that are asymptotically
O(μ2), optimized dispersion gives much more accurate nonlinearity
with errors that are asymptotically O(μ4), has total errors of less
than 20% for khb1.7, and is accurate to within 36% for the range
0bkhb6. Furthermore, errors over this range tend to give weaker
nonlinearity, which is extremely helpful for numerical implementa-
tion. It should be noted that second order superharmonic behavior
for the optimized O(μ2) dispersion including O(μ2) nonlinearity is
identical to the ‘datum invariant’ equations of Kennedy et al. (2001)
optimized for Padé [2,2] dispersion, even though the systems were
derived through very different methods. These previous ‘datum in-
variant’ equations are generalizations of the Wei et al. (1995) equa-
tions so that the reference elevation is defined at a constant fraction
of the instantaneous water depth, which is equivalent to a fixed
sigma coordinate. In this way, the connection to the present system
may be seen.

AtO(μ4) dispersionusing shifted Legendre basis functions, nonlinear
behavior shows little improvement when compared to O(μ2), despite
the great improvement in linear dispersive accuracy; this because
only O(μ2) nonlinear terms were retained in the new systems for rea-
sons of complexity. However, dispersion, shoaling, and second order
nonlinear optimization through asymptotic rearrangement can signifi-
cantly improve all parameters. Many different optimizations were
tried but some, for example, might improve asymptotic properties
very well at low wavenumbers but have pathological performance for
high wavenumbers. Fig. 7 shows second harmonics for several optimi-
zations at O(μ4). The first has Padé [6,6] dispersion, (kh)8 accurate
shoaling, and (kh)6 second harmonics. Here, good agreement is found
at low wavenumbers but relative error in the second harmonic in-
creases greatly for both root as wavenumbers increase, making the co-
efficient sets largely unusable.

The second optimization also uses Padé [6,6] dispersion as in
Section 4.1.2, optimizes shoaling over the range kh=[0,10] as in
Section 4.2.1, and uses the remaining free coefficients to optimize
the second harmonic over the same range. This gives slightly larger
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error for lower wavenumbers but has a maximum error of less than
4% over the range shown. Both of these are clear improvements
over the shifted Legendre basis functions, and again demonstrate
the power of asymptotic rearrangements.

Linear dispersion, shoaling, and nonlinear constraints may now be
used to define basis function coefficients. There are still remaining de-
grees of freedom that arise from the possibility of linear combinations
of basis functions, and do not appear to influence properties. Thus, we
arbitrarily set c=0 and j=0 to provide the final constraints and solve
0 1 2 3 4 5
−0.5

0

0.5

1

1.5

O(μ2)

k

η/
η S

t

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

O(μ4)

k

η/
η S

t

(ii)

(a)

(b)

Fig. 7. Model second order harmonic compared to full Stokes solution for steady wave. (a)
persion and shoaling to (kh.)4. (b) O(μ4) equations: (i) Shifted Legendre basis function
(iii) Padé [6,6] dispersion, shoaling and second harmonic errors minimized over kh=[0,10]
mized over kh=[0,10].
for the basis function coefficients for the different optimizations. Be-
cause of the greater complexity of higher order systems, it was only pos-
sible to obtain numerical values for coefficients rather than the exact
solutions found for O(μ2). These coefficients define basis functions and
corresponding evolution equations, thatmay then be used inmore gen-
eral conditions as shown in the next section. It is clear from Fig. 7 that
many of the coefficient sets will have poor nonlinear behavior at high
wavenumbers; thus Table 2 gives detailed coefficients only for set
(iii) of Fig. 7, with Padé [6,6] dispersion, and shoaling and second
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h
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h
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O(μ2) equations: (i) Shifted Legendre basis functions; (ii) Taylor series optimized dis-
s; (ii) Padé [6,6] dispersion, Taylor series (kh)8 shoaling, (kh)6 second harmonic;
; (iv) Padé [6,6] dispersion, Taylor series (kh)8 shoaling, second harmonic errors mini-
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Fig. 9. Computed and measured time series of wave transformation over a submerged
shoal, O(μ2) equations, Padé [2,2] dispersion, optimized shoaling kh=[0,4].

24 Y. Zhang et al. / Coastal Engineering 73 (2013) 13–27
harmonic error optimized over kh=[0,10]. This recommended set
should give good results for a variety of simulations.

6. Numerical tests: wave transformation over a submerged shoal

The transformation of a wave train passing over a trapezoidal
shoal is a standard test in Boussinesq and Green–Naghdi-type wave
models as it tests not only linear dispersion and shoaling perfor-
mance, but also nonlinear shoaling and fissioning. Here, we use the
data reported in Beji and Battjes (1993) and Dingemans (1994),
which has been used for comparison by numerous researchers
(Barthelemy, 2004; Beji and Battjes, 1994; Chazel et al., 2011; Gobbi
and Kirby, 1999). Fig. 8 shows the experimental setup and measure-
ment locations, with stations before, on, and after the bar. All data
and computations show largely linear waves before the bar, nonlinear
peaked waves on the bar in early stages of fissioning, and complex
multifrequency waves after the bar as bound higher harmonics are
released in deeper water.

Computations here were performed for both O(μ2) and O(μ4)
equations using a standard central differencing scheme in one hori-
zontal dimension and fourth order Runge–Kutta time differencing. A
spatial resolution of Δx=0.025 m and Δt=0.02 s was used for all
tests shown here. Additional resolutions were also tested and did
not show significant differences. Lower order computations used
the optimized set with Padé [2,2] dispersion and shoaling optimized
over kh=[0,4] in Table 2, while O(μ4) computations used the Padé
[6,6] dispersion and both shoaling and nonlinear properties opti-
mized over kh=[0,10]. The computational boundaries had reflecting
walls without sponge layers to absorb waves, but the domain was
large enough that reflected waves did not reappear in the areas of in-
terest before the end of the simulations.

Fig. 9 shows time series of measured and computed water surface
elevations for Case A with Tp=2.02 s and initial wave height H=2 cm
using the optimized O(μ2) equations with Pade [2,2] dispersion.
Agreement on the bar is excellent, where the wave has a sharply
peaked form and appears to be fissioning like a solitary wave on a
shelf. After the bar, the wave releases its bound harmonics which
then travel largely as free waves at their own speeds. Agreement re-
mains good here although errors may be seen to accumulate with in-
creasing distance from the bar, as the higher harmonics are not
simulated as well by these O(μ2) equations. Agreement here is quite
similar to other optimized O(μ2) equations including theWKGS equa-
tions shown in Gobbi and Kirby (1999), the equations of Madsen et al.
(1991) and Madsen and Sørensen (1992) as reported by Dingemans
(1994), and Green–Naghdi type solutions (Chazel et al., 2011). For
this level of approximation, it appears that accuracy is limited by
the Pade [2,2] or similar dispersion and any improvement demands
a similarly improved dispersion relation.

Fig. 10 shows results for the higher O(μ4) equations with Padé
[6,6] dispersion, and optimized shoaling and second harmonics over
the range kh=[0,10]. The other O(μ4) coefficients in Table 2 give al-
most identical results. Before on, and immediately after the shoal,
0 6
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Fig. 8. Experimental setup for wave transformation o
O(μ4) results are almost identical to the O(μ2) solution, showing
that this gives a good simulation of the actual processes in these re-
gions. However, the improved dispersion of the O(μ4) equations be-
comes apparent by x=21 m, when the higher order equations give
a much better prediction of the water surface. These results are
quite good and are comparable to the weakly nonlinear WN4 simula-
tions of Gobbi and Kirby (1999) over the same topography. However,
the present O(μ4) solutions still have some errors in higher harmonic
terms and are not as accurate as Gobbi and Kirby's fully nonlinear FN4
equations for this problem. This is because the FN4 equations keep
more nonlinear terms than the present models, although at the
price of much more complexity. Thus, even though we have opti-
mized dispersion, shoaling and second harmonics, the higher order
nonlinear behavior does not appear to be automatically improved,
and limits are apparent. Still, accuracy appears to be quite good, and
is adequate for almost all nearshore purposes, particularly when we
consider that the model may be naturally extended to include rota-
tional processes in the surf zone.
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ver a submerged shoal, showing gauge locations.
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7. Discussion and conclusions

The inclusion of rotationality in the present formulations was not
important in the examples here, which were inviscid and irrotational
wave problems; still the use of a fundamentally rotational model that
mimics existing Boussinesq results both analytically and numerically
gives good confidence in its ability outside the surf zone. For exten-
sion into the surf zone and through to the shoreline, additional vis-
cous/turbulent stresses need to be specified corresponding to
breaking wave dissipation and bottom stresses; these are under de-
velopment and will be detailed in a future publication. The present
formulation has the great advantage that because it is derived with-
out any irrotationality conditions, it will be able to make use of
more standard turbulence closures and thus needs to make fewer
ad-hoc breaking assumptions than many other Boussinesq-type
breaking models (e.g. Kennedy et al., 2000a). It may also prove ad-
vantageous in some situations to introduce a second shallow water
rotational scaling, which will allow for the representation of bottom
boundary layer and similar processes without a large increase in the
Boussinesq dispersive order.

The systems of equations derived here have properties that fall di-
rectly within the range of standard Boussinesq and Green–Naghdi
models, but provide some useful extensions, particularly in that ve-
locity modes are not slaved to each other by irrotationality.

The generalization of velocity basis functions combined with
Boussinesq scaling allows for asymptotic rearrangements similar in
character to those of Nwogu (1993), Madsen and Schäffer (1998)
and others, and with similar improvements in accuracy. For linear
properties of O(μ2) and higher, generalized analysis using arbitrary
basis functions becomes highly complex but the use of shifted Legen-
dre polynomials, which have excellent orthogonality properties, pro-
vides accuracy that is considerably higher than the formal level of
approximation for both linear dispersion and shoaling (O(μ2N−2)).
This is particularly obvious when compared with simple monomial
basis functions.

Fully nonlinear systems up to O(μ2) are straightforward to derive
and code by hand. Linear components up to arbitrary order may
also be explicitly written and coded without great difficulty, but the
nonlinear components become extremely complex. As such, O(μ2)
may represent a practical limit to nonlinearity for these types of sys-
tems. It is quite possible to develop codes that automatically sum and
integrate the nonlinearity without ever writing down the system on
paper. However, related developments using many of the same con-
cepts as the present paper, including Boussinesq and rotational shal-
low water scalings and asymptotic rearrangement, may prove to be
better candidates for very high order representation of nonlinearity.
In any case, as mentioned in the Introduction, the assumption of a
single-valued free surface η(x,y,t) will impose an upper limit on surf
zone accuracy, particularly in regions of strong plungers.

Still, the systems here represent a significant advance in that they
can naturally represent rotational processes while keeping many of
the advantages of standard Boussinesq and Green–Naghdi formula-
tions. The demonstrated linear convergence for higher order equa-
tions is also significant.
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A. Multiple scale expansions to obtain linear dispersion and
shoaling properties

The multiple scales expansion in space (assuming that the system
is purely periodic in time) has fast and slow spatial derivatives x and
X1, respectively

un;t→un;t

un;xt→un;xt þ �un;Xtun;xxt→un;xxt þ �un;xX1t
þ �un;X1xt

þ O �
2
�� ðA:1Þ

with similar expressions for η. As is standard, fast derivatives will be
of leading order while slow derivatives are of O( ).

As an example, defining the water depth to be only slowly varying
and thus have only slow X1 derivatives, the horizontal derivative of
the linearized pressure equation (Eq. (2.8)), to O �h;X1 Þ;

�
is then

∂P
∂x ¼

XN−2

n¼0

μβnþ2
�
−un;xxth

2 Gn q ¼ 1−Gnj Þð � þ gη;x

þ�
XN−2

n¼0

μβnþ2
�
− un;xX1t

þ un;X1xt

� �
h2
�
Gnjq¼1−Gn

��

þ�hh;X1

XN−2

n¼0

μβnþ2un;xt

�
−2
�
Gnjq¼1−GnÞ þ

�
Rnjq¼1−Rn

�
−gnjq¼1−gnqþ 2gn

�
þ �gη;X1

þ O μNþ2
� �

ðA:2Þ

while a multiple scales expansion for the mass equation gives

η;t þ
XN
n¼0

gn q¼1 un;x þ �un;X1
Þhþ �unh;X1

� i
¼ 0

h��� ðA:3Þ
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Now expand each component in a perturbation series: η=
η(0)+η (1), un=un

(0)+ un
(1). Insert these into Eqs. (3.7) and (3.8),

and collect all terms into the various orders to get perturbation equa-
tions: At O(1)

η 0ð Þ
;t þ

XN
n¼0

gnjq¼1u
0ð Þ
n;x ¼ 0

h
�XN

n¼0

ϕmnjq¼1u
0ð Þ
n;t−

XN−2

n¼0

u 0ð Þ
n;xxth

2 gmjq¼1Gnjq¼1−Γmnjq¼1

� �

þ gm q¼1 gη 0ð Þ
;x

� ���� �
¼ 0;m ¼ 0;N½ �

ðA:4Þ

At O(e),

η 1ð Þ
;t þ

XN
n¼0

gnjq¼1u
1ð Þ
n;x ¼ −a 1ð Þ

h
�XN

n¼0

ϕmnjq¼1u
1ð Þ
n;t−

XN−2

n¼0

u 1ð Þ
n;xxth

2 gmjq¼1Gnjq ¼ 1−Γmnjq¼1

� �
þgm q¼1 gη 1ð Þ

;x

� ���� �
¼ −b 1ð Þ

m ;

ðA:5Þ

where m=[0,N],

a 1ð Þ ¼
XN
n¼0

gn q¼1 u 0ð Þ
n;X1

hþ u 0ð Þ
n h;X1

� ���� ðA:6Þ

b 1ð Þ
m ¼ h

XN−2

n¼0

− u 0ð Þ
n;X1xt

þ u 0ð Þ
n;xX1t

� �
h2
�
gmjq¼1Gnjq¼1−Γmnjq¼1

�
þh2h;X1

XN−2

n¼0

u 0ð Þ
n;xt

h
−2 gmjq¼1Gnjq¼1−Γmnjq¼1

� �
þ gmjq¼1Rnjq¼1−Θmnjq¼1

� �
−gmjq¼1gnjq¼1

þ2γmnjq¼1−θmnjq¼1� þ hgmjq¼1 gη 0ð Þ
;X1

� �
; m ¼ 0;N½ �

ðA:7Þ

Taking each component (at any order)

η≡ η̃ eiψ þ c:c: un≡ ũne
iψ þ c:c: ðA:8Þ

where ψ,x≡k(X1), ψ,t≡−σ, and c.c.refers to the complex conjugate.
We then substitute into Eqs. (A.4)–(A.7) and solve.

At first order, the system is closed and the linear dispersion rela-
tions may be found by setting the determinant of Eq. (A.4) to zero,
At second order, the system is still not closed because there are
more unknowns than equations, and more constraints must be devel-
oped. First, we specify η̃ 2ð Þ

0 ¼ 0; so that the wave height on the slope
is the same as on a flat bed. Next we relate k;X1 to h;X1 . If we write the
dispersion relation as σ2/gk=Q(kh) then

k;X1
¼ −h;X1

k
h

khQ ;kh

Q þ khQ ;kh
¼ h;X1

ktr ðA:9Þ

khð Þ;X1
¼ h;X1

k 1−
khQ ;kh

Q þ khQ ;kh

 !
¼ h;X1

kh½ �tr ðA:10Þ

where the derivative of Q is with respect to kh. This works for all dis-
persion relations, when the appropriate expressions are used for ap-
proximate or exact quantities.
Finally, we must relate ũn,X1

(0) to η̃ 0ð Þ
;X1

through the dispersion ma-
trix. All of these relationships will have the form

ũ 0ð Þ
n

σ η̃ 0ð Þ ¼ Tn khð Þ ðA:11Þ

This leads to

ũ 0ð Þ
n;X1

¼ η̃ 0ð Þ
;X1

σTn þ η̃ 0ð ÞσTn;kh kh;X1
þ k;X1

h
h i

¼ η̃ 0ð Þ
;X1

σTn þ η̃ 0ð ÞσTn;khh;X1 kh½ �tr ðA:12Þ

which, once it is noted that η̃ 0ð Þ
;X1

¼ η̃ 0ð Þ
;h h;X1

; closes the system.
The revised equations are then

a 1ð Þ ¼ h;X1

XN
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� �� �
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−σ2kTn η̃
0ð Þ

;h
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All η̃ 0ð Þ
;h terms are then moved from the RHS to the LHS (as they are

unknowns) and a linear matrix is then solved for η̃ 0ð Þ
;h and ũn(1), n=0,1,

…,N. When written in the form

η̃ 0ð Þ
;h

η̃ 0ð Þ ¼
γh

h
ðA:15Þ

this may be compared to the linear Stokes solution (e.g. Madsen and
Schäffer, 1998)

γh ¼ −2 khð Þsinh2 khð Þ þ 2 khð Þ2 1−cosh2 khð Þð Þ
2 khð Þ þ sinh2 khð Þð Þ2 ðA:16Þ

B. Second Order Stokes Expansions

At second order of nonlinearity for a flat bed in one horizontal di-
mension, the mass equation becomes

η 1ð Þ
;t þ

XN
n¼0

μβnu 1ð Þ
n;xhgnjq¼1 ¼ −A1−μ2A2 ðB:1Þ

where nonlinear forcing terms are

A1 ¼ u 0ð Þ
0 η 0ð Þ� �

;x
g0jq¼1

A2 ¼
X2
n¼1

u 0ð Þ
n η 0ð Þ� �

;x
gnjq ¼ 1

ðB:2Þ

Thus, inclusion ofA1 termswill produceO(1) longwave nonlinearity
(equivalent in order to Peregrine, 1967 and Nwogu, 1993), while the
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addition of μ2A2 terms will produce nonlinearity equivalent in order to
Wei et al. (1995). The weighted momentum equations are then

XN
n¼0

μβnu 1ð Þ
n;t hϕmnjq¼1−

XN−2

n¼0

μβnþ2u 1ð Þ
n;xxth

3 Gngm−Γmnð Þjq¼1

þ gη 1ð Þ
;x hgmjq¼1

¼ −B1−μ2B2; m ¼ 0;N½ � ðB:3Þ

where similar remarks apply to the B1 and μ2B2 terms,

B1 ¼ u 0ð Þ
0;t η

0ð Þgmjq¼1 þ u 0ð Þ
0 u 0ð Þ

0;xhgmjq¼1 þ gη 0ð Þ
;x η 0ð Þgmjq¼1

B2 ¼
X2
n¼1

u 0ð Þ
n;t η

0ð Þϕmn−u 0ð Þ
n η 0ð Þ

;t εmn

h i
jq¼1

þ
X2
n¼1

u 0ð Þ
0 u 0ð Þ

n

� �
;x
hϕmn−u 0ð Þ

n u 0ð Þ
0;xhεmn

� �
jq¼1

−3
2
u 0ð Þ
0;xxtη

0ð Þh2 gm−νmð Þjq¼1−u 0ð Þ
0;xtη

0ð Þ
;x h2gmjq¼1

þ h3

2
u 0ð Þ
0;x

� �2−u 0ð Þ
0 u 0ð Þ

0;xx

� �
;x
gm−νmð Þjq¼1

ðB:4Þ

At second order nonlinearity, surface elevations and velocities for
steady waves have the form of a wave with the same phase speed but
twice the wavenumber η 1ð Þ ¼ η̃ 1ð Þexp 2iψð Þ þ c:c: and un

(1)=ũn(1)

exp(2iψ)+c.c., where ψ,x=k, ψ,t=−σ as before. Substitution of the
first order linear wave solutions for surface elevation, frequency and
orbital velocities into second order equations then gives the complete
second order steady solution, for which we are most concerned with
the bound second harmonic of surface elevation.
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