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Abstract. We consider inverse problems for a deterministic model in which the dimension of the output quan-
tities of interest computed from the model is smaller than the dimension of the input quantities
for the model. In this case, the inverse problem admits set-valued solutions (equivalence classes of
solutions). We devise a method for approximating a representation of the set-valued solutions in
the parameter domain. We then consider a stochastic version of the inverse problem in which a
probability distribution on the output quantities is specified. We construct a measure-theoretic for-
mulation of the stochastic inverse problem, then develop the existence and structure of the solution
using measure theory and the disintegration theorem. We also develop and analyze an approxi-
mate solution method for the stochastic inverse problem based on measure-theoretic techniques. We
demonstrate the numerical implementation of the theory on a high-dimensional storm surge appli-
cation where simulated noisy surge data from Hurricane Katrina is used to determine the spatially
variable bathymetry fields of highest probability.
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1. Introduction. Computing information about input parameters for a mathematical
model of a physical system based on observations on model output quantities is a critical
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component of scientific inference and engineering design. The solution of a model induces a
map from the space of input parameters and data (referred to as parameters in this paper) to
the output quantities of interest computed from the solution of the model. In many situations,
these quantities of interest are related to the experimentally observable aspects of the modeled
system. In that case, an important problem is to determine possible parameter values that
match the observations on the quantities given by the output of the model. Important in its
own right, information about parameter values can also be used for predicting unobserved
behavior of the system and determining parameter values that lead to optimal behavior.

This parameter determination problem is nominally a deterministic inverse problem. In
many situations, however, the observational data on the model outputs is affected by error
and uncertainty that are described in stochastic terms. The result is a type of stochastic
inverse problem: If we describe the stochastic quantities in terms of the associated probability
distributions, then the inverse problem is to determine information about the probability
distribution(s) on the input parameter space that match the distributions associated with
observations on the output. For example, given the shallow-water equations, a wind model for
Hurricane Katrina, and noisy data corresponding to the recorded maximum surge at various
points of interest (e.g., at levees near the city of New Orleans), an inverse problem of practical
importance is to determine the probability measure on model parameters corresponding to
bathymetry along the coast of Louisiana.

A significant complication arises in the common situation in which the model induces
a noninvertible solution operator. Under typical assumptions on the model, the solution of
the deterministic inverse problem for a single output value consists of a set of points in the
parameter domain (as opposed to a single point). The solution of the inverse problem on
the range of the solution operator yields a space of equivalence classes of set-valued solutions.
Contour maps of elevation present a familiar example of such solutions. Set-valued solutions
significantly complicate the approximate solution of the deterministic and stochastic inverse
problems.

This paper continues the formulation and solution of stochastic inverse problems begun
in [2, 5]. Our approach can be described as carrying out measure-theoretic computations in
the space of set-valued solutions made concrete by explicit approximation of points in that
space. In [2], we constructed and analyzed a method based on approximating set-valued
solutions in the case of a single quantity of interest. In [5], we performed a full numerical
analysis, including a priori convergence and a posteriori estimation analysis, for the approach
in [2]. In this paper, we treat the additional geometric complications that arise from multiple
quantities of interest, using an altered approach based on approximating events rather than
the manifolds defining the set-valued solutions. We also provide a fuller measure-theoretic
development of the stochastic inverse problem.

In section 2, we begin with a first principles “measure-theoretic” description of the stochas-
tic inverse problems considered in this paper. The motivation is to be absolutely clear about
the inverse problem we solve, since there are several valid inverse problems associated with un-
certainty quantification for a physics-based model. Next we consider the solution of stochastic
inverse problems, which is broken down into two aspects:

1. describe an approximate constructive representation of the set-valued inverse solution
of the deterministic model;
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176 BUTLER, ESTEP, TAVENER, DAWSON, AND WESTERINK

2. approximate the probability density (measure) on the parameter space that corre-
sponds to the set-valued inverse and the observed output density.

The first aspect is described in section 3. The second aspect is described in section 4. In
that section, we also comment briefly on the relation to other inverse problems and solution
approaches. Finally, we present the main numerical examples in section 5.

2. Formulation of stochastic inverse problems. Our starting point is a physical descrip-
tion expressed as a deterministic model M(Y, λ) that determines a solution Y (λ) that is
an implicit function of parameters and data λ in a compact1 set Λ0 ⊂ R

n. The domain
Λ0 is the largest physically meaningful domain of parameter values. The goal of solving
the model is to compute a set of “geometrically distinct” quantities of interest, {Qi(Y )}mi=1,
where Qi is a functional valued in R. This induces a map Q(λ) = (Q1(λ), . . . , Qm(λ))� =
(Q1(Y (λ)), . . . , Qm(Y (λ)))� from Λ0 into its range D0. We give a precise definition of “geo-
metrically distinct” in section 3. In the case of linear maps, this is simply linear independence.
Our interest lies in the case thatm < n. In practice, it is often the situation that the goal of the
mathematical modeling is to compute a relatively small set of quantities of interest. Moreover,
it is often the situation that only a handful of quantities are experimentally observable.

We describe a sequence of forward problems and corresponding inverse problems in mea-
sure-theoretic terms. For other approaches to stochastic inverse problems involving measure
theory, see Banks and Bihari [1] and Tarantola [15].

Forward problems for a deterministic, physics-based model. We first describe a sequence of
“forward” problems for a deterministic, physics-based model. The lowest level of forward
problem is simply to evaluate the map Q for a particular parameter value λ. Of course,
depending on the model, the approximate solution of the model and issues such as convergence
and accuracy of the approximate solution may be very complex. We do not address these issues
here; see [5].

The next level of forward problem is fundamental to the deterministic sensitivity analysis
of the model. There are several kinds of sensitivity analysis, e.g., computation of derivatives,
dynamical behavior, etc. However, all examples are concerned with describing how the output
of the model behaves as the parameters are varied over sets of values. We define a compact set
Λ ⊂ Λ0 that forms the domain of consideration for the map Q, and we use D = Q(Λ) ⊂ D0

to denote the corresponding range of the map.
The sensitivity analysis of the behavior on sets requires additional structure on the param-

eter space that allows evaluation of the distance between points, e.g., so that we can discuss
convergence of sequences, limit points, set topology, and distance between a point and a set.
Hence, we assume that Λ and D are metric spaces and that the map Q is locally differentiable
with respect to the metrics on Λ and D. This is very often the case under typical assumptions
on the model.

In turn, this makes Λ into a measure space (Λ,BΛ, μΛ) using the Borel σ-algebra BΛ

and “volume” (Lebesgue) measure μΛ. Assuming the Borel σ-algebra BD on D, μΛ induces a

1We explicitly use the compactness assumption in our solution methodology. The method can be extended
to deal with noncompact Λ, but additional considerations are required. We note that parameters are often
limited to compact sets for physical reasons.
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volume measure μD on D. This “push-forward” measure is defined for measurable A ∈ BD,

μD(A) =
∫
A
dμD =

∫
Q−1(A)

dμΛ = μΛ(Q
−1(A)),

yielding the measure space (D,BD, μD). Our definition of the inverse problem and computation
of its solution depend critically on these volume measures. We emphasize that these measures
are not probability measures. They are introduced naturally as part of the construction of
the mathematical model and are related to the physical meaning of the parameters.

The third forward problem is the stochastic sensitivity analysis problem. This builds on
the second forward problem. We assume that a probability measure PΛ is given on Λ that is
absolutely continuous with respect to μΛ, yielding the probability space (Λ,BΛ, PΛ). Hence,
the computation of the probability of an arbitrary event E ∈ BΛ can be written in terms of
an integral involving a probability density ρΛ with respect to μΛ,

PΛ(E) =

∫
E
ρΛdμΛ.

The goal of the stochastic sensitivity analysis is to compute the probability density ρD with
respect to μD induced by ρΛ; i.e., for event A ∈ BD,

PD(A) =
∫
A
ρDdμD =

∫
Q−1(A)

ρΛdμΛ = PΛ(Q
−1(A)).

This is a familiar problem in uncertainty quantification, whose solution can be obtained via a
classic Monte Carlo method. Namely, we draw samples from Λ according to the probability
measure ρΛdμΛ, evaluate the map for each sample, bin the results, apply smoothing, and thus
obtain an approximation to ρD.

Inverse problems for a deterministic, physics-based model. We next present a sequence of
inverse problems directly corresponding to the forward problems described above. The first
problem is to compute the set of input values corresponding to a single given value for the
map Q in D. Note that because Q is an “n-to-m” map with n > m, each value in the range
of Q corresponds to a set of values in Λ. For example, if Q maps Λ ⊂ R

2 to D ⊂ R
1, then

the inverse set corresponding to a given value is a contour curve; see Figure 1. In general, we
call an inverse set a generalized contour. By the assumption that Q is locally differentiable,
the implicit function theorem guarantees that the generalized contours exist as locally smooth
manifolds (section 3).

Corresponding to the second forward problem, we next consider the inverse problem for
Q on a given range D. We assume that D is the proper range of Q over Λ, and so we can
decompose Λ into a union of generalized contours corresponding to—and indexed by—the
points in D. This is an equivalence class decomposition of Λ, where two points are equivalent
if they are in the same generalized contour. In the case of inverting a two-to-one dimensional
map, this decomposition is a contour map; see Figure 1. We denote the space of equivalence
classes in Λ by L, so that each point in L corresponds to a set of points in Λ. The inverse of
Q defines a one-to-one, onto map between D and L. The inverse image of a set in D is a set
of points in L corresponding to a collection of set-valued inverses in Λ; see Figure 1.
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Λ

Q(λ)

D

L
L

Λ Λ

Figure 1. Illustrations of several inverse problems for an inverted quadratic “bowl.” Left: The set-valued
inverse of a single output value. Middle: There is an invertible map between the set of equivalence classes
L and the range D. We show a partition of Λ by a set of contour equivalence classes. Right: A probability
distribution on the range D gives a unique inverse distribution on the set of equivalence classes L. We show
contours corresponding to a sample drawn on the distribution on D. Figures are adapted from [2].

Dealing with set-valued solutions requires adjustment of common conceptions because
notions such as continuity and well-posedness must be phrased with respect to points in L,
not with respect to points in Λ. For example, the condition or degree of near-ill-posedness
of the inverse map is determined by how well the map distinguishes different equivalence
classes from each other. Different representers from the same equivalence class cannot be
distinguished by the solution of the inverse problem, but this is not ill-posedness in the context
of set-valued solutions. While this is a significant restriction, practical experience with contour
maps demonstrates that the space of generalized contours is nonetheless very useful.

Finally, a σ-algebra BL on L can be generated using inverse images of a collection of Borel
sets in BD, and the volume measure μD induces a volume measure on L,

μL(A) =
∫
A
dμL =

∫
Q(A)

dμD,

for A ∈ BL. We obtain a measure space (L,BL, μL).
Next, we introduce a stochastic version of the previous inverse problem. Namely, we

assume that a probability measure PD is given on D as a probability density ρD with respect
to μD. The inverse problem is to compute the induced probability measure PL described as a
probability density ρL on L with respect to μL,

PL(A) =
∫
A
ρLdμL =

∫
Q(A)

ρDdμD = PD(Q(A)),

for A ∈ BL. In other words, we carry out probability computations in a space (L,BL, PL)
whose points consist of generalized contours. We illustrate in Figure 1.

Under our assumptions, the equivalence relation on Λ determined by Q−1 is a measurable
map from Λ to L. The induced σ-algebra CΛ on Λ can be generated from the set of equivalence
classes of a set of generating events for BL. We note that CΛ is a proper subset of BΛ in general,
and we call events in CΛ “contour events”; see Figure 2. The induced probability measure
PΛ,CΛ is defined as PΛ,CΛ(A) = PL(EA) = PD(Q(A)), where EA is the event in L corresponding
to the equivalence class of A.
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Λ

L
A

B

C D A

Figure 2. Illustration of the solution of the inverse problem in (Λ, CΛ) following Figure 1. Event A is a
“contour event” in CΛ that is in the equivalence class corresponding to the event in L marked in white. The
probability of A is the probability of the corresponding event in L. The probabilities of events B, C, and D,
which are all in the same equivalence class as A, are equal to the probability of A.

In the second and third inverse problems, we have used all the information that is possible
to obtain from inversion of the map Q. Yet, the third inverse problem does not match
the third forward problem. In the third forward problem, we can distinguish the individual
probabilities of distinct events in the original σ-algebra BΛ. However, in the third inverse
problem, we can only distinguish the individual probabilities of distinct events in the contour
σ-algebra CΛ. Distinct events in BΛ that are in the same equivalence class have the same
probability regardless of differences in size, location, and shape; see Figure 2.

However, the events in the original σ-algebra BΛ have important physical meaning in the
context of the model. Different events in BΛ corresponding to the same equivalence class in
L may represent significantly different physical conditions. Hence, applications in scientific
prediction and engineering design naturally involve distinguishing between distinct events in
BΛ as much as possible. Thus, the ideal inferential target is a probability measure with respect
to BΛ, not merely with respect to CΛ. But this clearly requires more than the information
that can be obtained by inverting Q. Indeed, in general there is no unique solution of this
problem without further assumption; see [2].

Roughly speaking, the disintegration theorem discussed in section 4.1 guarantees that
any measure on Λ can be decomposed into a form involving measures in L and along each
generalized contour corresponding to points in L, in a manner somewhat analogous to a
product decomposition. The measures on L and on each generalized contour are restrictions
of measures onΛ that make sense on these sets of μΛ-measure zero. Considering an application
to a probability measure on Λ solving the stochastic inverse problem, the component of the
probability measure on L is determined. Thus, if we prescribe measures along each generalized
contour, we obtain a unique solution of the stochastic inverse problem.

The measures along the generalized contours cannot be obtained by observation on Q.
This motivates the adoption of an ansatz in which the probability measures along generalized
contours are specified. The ansatz is stated precisely in section 4.1. With the adoption of
the ansatz, there is a unique solution of the stochastic inverse problem from (D,BD, μD)
to (Λ,BΛ, μΛ). We then show how to approximate this solution using measure-theoretic
techniques. If the ansatz is unacceptable, then the inverse problem can be solved only in
(Λ, CΛ, μΛ), i.e., with respect to contour events. Our approximation technique can be modified
to approximate this solution as well.D
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3. Set-valued solutions of deterministic inverse problems. We first consider the un-
derlying problem of defining a solution to the deterministic inverse problem of mapping an
n-dimensional set Λ ⊂ R

n into an (m ≤ n)-dimensional space D ⊂ R
m. Following [2], the

set-valued inverses of Q(λ) are called generalized contours, and any indexing manifold of the
generalized contours in Λ, i.e., a representation of L in Λ, is called a transverse parameteri-
zation.

3.1. Linear maps. It is enlightening to first consider the case of a linear map Q defined
by m linearly independent linear maps Qi(λ) =

∑n
j=1 aijλj acting on Λ ⊂ R

n. In this case,
we can describe L and the generalized contours corresponding to points in L precisely.

Let A : Λ → D denote them×nmatrix [A]ij = aij, soQ(λ) = Aλ is the vector-valued map
with components Q�

i λ. Let ui = Qi/ ‖Qi‖, so that Qi(λ) = ‖Qi‖u�
i λ, where ‖·‖ is the usual

Euclidean norm. We denote the null space of A byN and note thatN = (span {u1, . . . ,um})⊥.
We complete {u1, . . . ,um} to obtain an orthonormal basis {um+1, . . . ,un} for N . The dual
of the quotient space L = Λ/N can be identified with N⊥ and is isomorphic to D by the
first isomorphism theorem. For any vector λ ∈ Λ, let λ̃ denote the unique representation of λ
using the basis of direction vectors defined by {u1, . . . ,um,um+1, . . . ,un}.

Thus, we have written the desired representation Λ ∼= L × N . If we choose any gen-
eralized contour from L and select a fixed representer from this equivalence class, then the
m-dimensional hyperplane defined by span {u1, . . . ,um} passing through this fixed representer
intersects each of the unique equivalence classes of L once and only once.

Next, we compute the representation ofQ on L×N . There exists a dual basis {b1, . . . ,bm}
of n × 1 vectors such that b�

i uj = 1 when i = j, and b�
i uj = 0 when i �= j. Given λ̃, the

action of A on Λ ∼= L ×N is defined by left multiplication by the matrix

(3.1)
(
B�A� 0m×(n−m)

)
,

where B is the n×m matrix with ith column the ith dual basis vector bi. The m×m matrix
B�A� is the diagonal matrix with ith diagonal given by ‖Qi‖. The ratio of the largest and
smallest diagonal entries of B�A� determines the condition number of the map from L to D.

Example 1. Let Λ = [0, 1]3 and consider D ⊂ R
2 defined by vector-valued map Q(λ) =

(Q1(λ) Q2(λ) )� for two linearly independent linear component maps Q1(λ) ≈ 0.506λ1+0.253λ2+
0.085λ3 and Q2(λ) ≈ 0.463λ1 +0.918λ2+0.496λ3. The left and middle plots of Figure 3 show
the planes in Λ equal to the generalized contours and lines in Λ equal to the transverse param-
eterizations for the component maps Q1(λ) and Q2(λ), respectively. The right plot of Figure 3
shows the generalized contours in Λ, which are the lines defined by intersections of the planes
defining the generalized contours of the component maps, and the transverse parameterization,
which is the plane in Λ with normal vector defined by the cross product of the vectors parallel
to the lines defining the transverse parameterizations for the component maps.

Some standard presentations of inverse problems for linear maps present the discussion in
the context of a map between spaces of equal dimensions, which makes it easier to carry out
regularization by adding an invertible operator. We can use the matrix representation (3.1)
of Q to define an invertible map Q̃ from R

n to R
n that is equivalent to Q. We let γ ∈ L

and η ∈ N denote the m- and (n −m)-dimensional vectors such that λ̃ = ( γ� η� )�, and let
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Figure 3. Left: The planes in Λ are generalized contours of Q1(λ), and the line indexing these planes is a
transverse parameterization. Middle: The planes in Λ are generalized contours of Q2(λ), and the line indexing
these planes is a transverse parameterization. Right: The lines in Λ are generalized contours of Q(λ), and the
plane indexing these lines is a transverse parameterization.

Q̃(γ, η) := Q̃(λ̃) = Ãλ̃ be the bijection between Λ ∼= L ×N and D ×N with matrix

(3.2) Ã :=

(
B�A� 0m×(n−m)

0(n−m)×m I(n−m)×(n−m)

)
.

For fixed components d1, . . . , dm and arbitrary parameter values dm+1, . . . , dn in R
n−m, the

solution to the square system Ãλ̃ = d defines the same affine hyperplane as the generalized
contour corresponding to Q−1(d1, . . . , dm).

Any invertible matrix C(n−m)×(n−m) can be used in (3.2) instead of I(n−m)×(n−m). It is
a modeling choice to use the identity to propagate vectors in the null space N justified by
simplicity. If having to make such a modeling choice is unacceptable, then reverting to (3.1)
is the alternative.

3.2. Nonlinear maps. We return to the general case of a nonlinear map Q.

3.2.1. Brief review for m = 1. In [2], when m = 1, we prove that any two distinct
generalized contours associated with distinct output values are unique nonintersecting mani-
folds. Additionally, we show that there exists a piecewise-smooth one-dimensional curve that
intersects each generalized contour once and only once, that this curve can be constructed
by a finite number of connected curves, and that this curve can be used as the transverse
parameterization representing L in Λ.

3.2.2. The case m > 1. We prove the existence of both the generalized contours and
the transverse parameterization for the case of multiple quantities of interest. The extension
from m = 1 requires characterization of the specification of “multiple quantities of interest.”

Definition 3.1. We say that the component maps of m-dimensional piecewise-smooth vector-
valued map Q(λ) are geometrically distinct (GD) if the Jacobian of Q has full rank at every
point in Λ.

Example 2. Consider a model M with input parameters x and y. Suppose(
z
θ

)
=

(
x2 + y2

angle of (x, y) with the x− axis

)
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Not Geometrically 
               Distinct

Geometrically Distinct

Figure 4. Left: The generalized contours for GD Q. Middle: The generalized contours for non-GD Q̃.
Right: Inverting both components of Q̃ gives answers consisting of pairs of points almost everywhere.

and Q := (z, θ)�. The generalized contours of the first component of Q are circles, while
the generalized contours for the second component of Q are rays from the origin; see Figure
4. The two sets of generalized contours are GD. If we invert from both components of Q
simultaneously, then the solutions consist of individual points since the map is 1–1 and onto.

Now suppose (
z
w

)
=

(
x2 + y2

y − x

)
,

with Q̃ := (z, w)�. The generalized contours for the first component are again circles, while
the generalized contours for the second component are lines with slope 1; see Figure 4. Given
a generalized contour of either component, we can find generalized contours of the other com-
ponent that are tangent at an intersection point, thus violating the condition for Q̃ being GD.
The consequence is that if we invert using both components of Q̃ simultaneously, the solutions
are equivalence classes consisting of two points almost everywhere.

Henceforth, we assume that Q : Λ → D is a locally differentiable nonlinear vector-valued
map with GD component maps. We adopt the following notational conventions:

• points in D are denoted by q,
• superscripts such as q(1) and q(2) differentiate between points in D, and

• subscripts denote a specific coordinate; e.g., q
(3)
2 denotes the second coordinate of the

third point.
Theorem 3.1. If q(1), q(2) ∈ D are distinct points, then there exist unique collections of

(n−m)-dimensional manifolds defining the two generalized contours for q(1) and q(2) that are
unique and do not intersect.

Proof. The multivariate implicit function theorem guarantees existence of locally smooth
(n − m)-dimensional manifolds whose unions define the separate generalized contours in Λ.
While these separate generalized contours associated with distinct output points can be defined
by unions of disconnected (n−m)-dimensional manifolds, they cannot intersect, as this would
contradict Q being a function.

It remains to show that there exists a transverse parameterization given by anm-dimensional
manifold indexing the (n−m)-dimensional generalized contours of the vector-valued mapQ(λ).
We present this as an independently interesting result.

Theorem 3.2. There exists an m-dimensional manifold defining a transverse parameteriza-
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tion for the set of generalized contours. Moreover, a piecewise-linear m-dimensional transverse
parameterization can be constructed in a finite number of steps.2

Proof. The generalized contours for Q(λ) are defined by intersections of m distinct (n −
1)-dimensional generalized contours from the m component maps indexed by points in D.
The goal is to construct an alternative representation of L consisting of points in Λ. The
assumption of local differentiability of Q(λ) implies that for almost every λ ∈ Λ the Jacobian
of Q(λ) is computable. The kth row of the Jacobian corresponds to the normal vector of
the (n − 1)-dimensional generalized contour for the kth component Qk(λ). For fixed q ∈ D,
choose any λ ∈ {λ |Q(λ) = q} such that the Jacobian is full rank. Such a point is guaranteed
to exist by the GD assumption. Let νλ,q denote the generalized cross-product of the m rows
of the Jacobian of Q(λ) evaluated at the choice of λ. The point λ and the vector νλ,q define a
hyperplane through λ that locally intersects distinct generalized contours since it is spanned
by the normal vectors to the m distinct (n − 1)-dimensional generalized contours of each of
the component maps. We may repeat this procedure at a countable number of points in Λ to
define a piecewise-linear m-dimensional manifold in Λ such that evaluation of Q(λ) at points
on this manifold defines an open cover of D. SinceD is compact, there is a finite subcover. This
implies that we can construct a piecewise-linear m-dimensional manifold in a finite number
of steps that intersects once and only once each of the unique (n−m)-dimensional manifolds
defining the unique generalized contours of Q(λ). Any such m-dimensional piecewise-defined
manifold is a transverse parameterization.

Locally, the set-valued inverses and the transverse parameterization can be approximated
by linear manifolds. We may then use a local change of coordinates, a.e., as in the linear case,
to describe the local linear approximations to the (n−m)-dimensional manifolds defining the
generalized contours as Λ ∼= L×N .

Example 3. Let Λ = [0.05, 1]3 and Q(λ) = (Q1(λ) Q2(λ) )�, where Q1(λ) = λ2
1+λ2

2+λ2
3 and

Q2(λ) = arccos(λ3/
√

λ2
1 + λ2

2 + λ2
3). Figure 5(left) shows the set D := Q(Λ) ⊂ R

2 of all pos-
sible output data. The generalized contours for Q1(λ) are the intersections of spherical shells
centered at the origin with the set Λ, and any straight line segment from (0.05, 0.05, 0.05) to
(1, 1, 1) is a transverse parameterization. The generalized contours for Q2(λ) are the intersec-
tions of cones centered at the origin with Λ, and any straight line segment from (1, 1, 0.05) to
(0.05, 0.05, 1) is a transverse parameterization. The generalized contours for Q(λ) are circles
of various radii centered at the origin at various heights in planes perpendicular to the λ3-axis.
A transverse parameterization may be described by the half-plane through Λ, as shown in Fig-
ure 5(right). Thus, the value of λ3 is uniquely determined by any Q(λ), whereas the values of
λ1 and λ2 can only be determined as being upon a circle of fixed radius in the horizontal plane
defined by λ3 constant.

A piecewise-linear approximation to Q and a transverse parameterization can be con-
structed systematically using interpolation on a triangulation of Λ (see [2] for an alternative
approach). We note that this approximation is not used in the algorithms for solving the
stochastic inverse problem discussed below.

Theorem 3.3. Suppose that Q is locally differentiable with GD component maps. There

2If Λ is not compact but μΛ(Λ) is finite, then there is no guarantee that the number of steps is finite, and
the proof is no longer constructive.
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0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Q1(λ)

Q 2(λ
)

Set of possible output data

Figure 5. Left: The set D of possible output data. Right: The quarter circles of various radii and vertical
height represent a random collection of unique generalized contours for the nonlinear vector-valued map Q(λ),
and the transverse parameterization that puts into 1–1 correspondence these set-valued inverses and the points
in D is plotted as the half-plane.

exists a sequence of piecewise-linear approximations that converge pointwise to a manifold in
Λ defining a transverse parameterization.

Proof. Given a triangulation of Λ, we evaluate Q at the vertices of each generalized
triangle to construct a piecewise-linear interpolant Q̃. The evaluation of Q̃ on the vertices of
the input generalized triangles defines both a cover and triangulation of D̃ := Q̃(Λ). Since
we assume m < n, each generalized m-dimensional triangle in D̃ is in 1-1 correspondence
with m vertices of an n-dimensional generalized triangle in Λ that shares a single “face” of
this n-dimensional generalized triangle by construction. In other words, the triangulation of
D̃ defines a triangulation of the faces of the input generalized triangles into unions of m-
dimensional triangles. Thus, by construction of the cover of D̃, there exists a finite index
map between the generalized triangles in D̃ and a triangulation of the faces of generalized
triangles in Λ. We compute a transverse parameterization for the map Q̃ in the following
way: (1) we choose a finite nonintersecting subcover of D̃ from the above triangulation, and
(2) for each generalized triangle in D̃ we use the index map to choose a specific m-dimensional
triangle on a single face of the associated input generalized triangle. By construction of the
local interpolant, the union of such m-dimensional triangles in Λ forms a linear approximation
to an m-dimensional manifold that indexes the local linear approximations to the (n − m)-
dimensional generalized contours that are contained in the input generalized triangles. Since
Q is assumed to be locally differentiable, for any ε > 0, there exists a triangulation of Λ such
that

(3.3) max{|Q(λ) − Q̃(λ)| : λ ∈ Λ} < ε.

We define a sequence of triangulations of Λ and piecewise linear approximations Q̃ satisfying
(3.3) with εk, where {εk} is a sequence such that εk ↓ 0. This sequence of piecewise-linear
(n−m)-dimensional approximations converges pointwise to the generalized contours, and sub-
sequently the corresponding sequence of piecewise-linear m-dimensional manifolds converges
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Q 2(λ
)

Set of possible output data
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Q1(λ)

Q 2(λ
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Set of possible output data

Figure 6. Left: Sets that cover D obtained by propagation of each triangular input element used in the
coarse piecewise-linear interpolant approximating the vector-valued map. Right: A finite subcover of D used to
define the global approximation to the transverse parameterization that indexes the generalized contours.
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Piecewise Linear Transverse Parameterization
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Piecewise Linear Transverse Parameterization
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λ 3

Figure 7. Left: The approximation to the transverse parameterization computed using the finite subcover
shown in Figure 6. Right: A refined approximation to the transverse parameterization computed using a finite
subcover of D obtained from the refined piecewise-linear interpolant to Q(λ).

to a transverse parameterization.
Example 4. To illustrate the convergence of approximate piecewise-linear transverse pa-

rameterizations to the transverse parameterization shown in Figure 5(right), we show approx-
imations at two resolutions. We compute two piecewise-linear interpolants approximating Q,
using first 6, 000 and then 162, 000 tetrahedral elements to define a triangulation of Λ. Figure
6(left) shows the cover of D defined from each local interpolant across each element of the
coarser approximation. The right plot in Figure 6 shows one particular subcover of D used
to define the transverse parameterization for this coarse approximation. The transverse pa-
rameterizations computed using the coarse and fine piecewise-linear interpolants are shown in
Figure 7.

4. The stochastic inverse problem. We now consider the solution of the stochastic inverse
problem. The computation of a probability measure on Λ corresponding to a probability
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A

EA

Λ

Ll

π−1(l)

generalized contours

Lλ

π  (λ)L

Figure 8. Notation for solution of the stochastic inverse problem.

measure on D depends on the geometric structure imbued by the generalized contours of Q
and the volume measures on Λ and D. In section 4.1, we prove the existence of a solution to
the stochastic inverse problem. In section 4.2, we discuss an approximation of the solution.

4.1. Existence, uniqueness, and structure of the solution. Recall that in section 2 we
described how the inverse of the map Q induces a probability space (L,BL, PL) from a prob-
ability space (D,BD, PD), where L is the space of equivalence classes corresponding to Q−1.
Theorem 3.2 implies that L can be described by a transverse parameterization in Λ, so we
abuse notation to let L denote any such transverse parameterization. We define the equiva-
lence map πL : Λ → L by πL(A) = EA for A ∈ BΛ, where recall that EA denotes the event in
BL corresponding to event A ∈ BΛ. We illustrate the notation in Figure 8.

The next step is to use the disintegration theorem to decompose any measure on the
measurable space (Λ,BΛ) into a combination of measures on L and on the generalized contours
corresponding to points in L.

The disintegration theorem. Note that the assumption that Q is locally differentiable im-
plies that it is a measurable map. Adapting the disintegration theorem [8, 7], we have the
following.

Theorem 4.1 (the disintegration theorem). Let (Λ,BΛ) be a measurable space and Q : Λ →
D be a measurable map with GD component maps, and assume that Ψ is a measure on (Λ,BΛ).
There is a family of measures {Ψ�} on (Λ,BΛ) defined for almost every � ∈ L such that

Ψ�(λ) = 0, λ ∈ Λ \ π−1
L (�), a.e. � ∈ L,

i.e., Ψ�(A) = Ψ�(π
−1
L (�) ∩A) for all A ∈ BΛ, and which gives the following disintegration for

Ψ:

(4.1) Ψ(A) =

∫
EA

Ψ�(A) dμL(�) =
∫
EA

(∫
π−1
L (�)∩A

dΨ�(λ)

)
dμL(�)

for A ∈ BΛ.
Proof. The proof follows from the disintegration theorem in [7] (see Appendix A) after

identifying ∫
Q(A)

ΨQ−1(q)∩L(A) dμD(q) =
∫
EA

Ψ�(A) dμL(�).

We note that the events in the σ-algebras on L and π−1
L (�), � ∈ L, can be obtained by

restriction of events in BΛ to L and π−1
L (�), respectively.
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The disintegration theorem is extremely useful in a variety of contexts. For example, in
product measure spaces, the disintegration theorem can be applied to the coordinate projection
maps to obtain a disintegration of measure familiar from Fubini’s theorem. The disintegration
theorem also justifies the restriction of a measure to the zero-measure boundaries of many types
of domains for evaluation of integrals in theorems such as Green’s theorem, the divergence
theorem, and Stokes’ theorem.

We can use Theorem 4.1 to disintegrate the volume measure μΛ, which in turn allows
definition of the solution of the stochastic inverse problem. We set μN (�; ·) = Ψ�(·) in the case
that Ψ = μΛ. We obtain the following result.

Corollary 4.1 (disintegration of the volume measure). For any A ∈ BΛ,

μΛ(A) =

∫
EA

μN (�;A) dμL(�) =
∫
EA

∫
π−1
L (�)∩A

dλμN (�;λ) dμL(�).

The solution of stochastic inverse problems. We use Corollary 4.1 to define a solution of
the stochastic inverse problem from (D,BD) to (Λ,BΛ) in terms of probability densities with
respect to the measures μN and μL. We begin by discussing the solution of the stochastic
inverse problem from (D,BD) to (L,BL).

Theorem 4.2. Let (Λ,BΛ) be a measurable space and Q : Λ → D be a measurable map with
GD component maps. Given a probability measure PD on (D,BD) that is absolutely continuous
with respect to μD, there exists a unique probability measure PL on (L,BL) that is absolutely
continuous with respect to μL.

Proof. The map Q is a bijection between BD and BL, and setting PL(A) = PD(Q(A)) for
A ∈ BL defines the solution to the stochastic inverse problem between (D,BD) and (L,BL).
If μL(A) = 0 for A ∈ BL, then by construction μD(Q(A)) = 0 and PD(Q(A)) = PL(A) = 0.
So, PL is absolutely continuous with respect to μL. Thus, there exists density ρL such that

PL(A) =
∫
A
ρL(�)dμL(�) =

∫
A
ρLdμL, A ∈ BL.

This solution is unique in L1(L,BL, μL) since any other probability measure on L that solves
the inverse problem and is absolutely continuous with respect to μL must have a density that
is equal to ρL a.e.

This result gives a solution of the stochastic inverse problem from (D,BD) to (Λ, CΛ) in
terms of a probability density, where recall that CΛ ⊂ BΛ is the σ-algebra of contour events
on Λ generated by the set of equivalence classes corresponding to a generating set for BL.

Theorem 4.3. Let (Λ,BΛ) be a measurable space and Q : Λ → D be a measurable map with
GD component maps. Given a probability measure PD on (D,BD) that is absolutely continuous
with respect to μD, there exists a unique probability measure PΛ,CΛ on (Λ, CΛ) that is absolutely
continuous with respect to μΛ.

Proof. The equivalence relation determined by πL defines a measurable map from Λ to
L so that, for arbitrary A ∈ CΛ, PΛ,CΛ(A) := PL(EA) is well defined. The conclusion follows
from Theorem 4.2.

However, we seek a solution of the stochastic inverse problem from (D,BD) to (Λ,BΛ).
To define the solution, we use a disintegration of any probability measure imposed on (Λ,BΛ)
given by Theorem 4.1 and Theorem 4.2.
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Theorem 4.4 (disintegration of a probability measure). Let (Λ,BΛ) be a measurable space
and Q : Λ → D be a measurable map with GD component maps, and assume that PΛ is
a probability measure on (Λ,BΛ) that is absolutely continuous with respect to μΛ. There is
a family of probability measures {P�} on (Λ,BΛ) defined for almost every � ∈ L such that
P�(λ) = 0, λ ∈ Λ \ π−1

L (�), a.e. � ∈ L, and

(4.2) PΛ(A) =

∫
EA

P�(A) ρL(�) dμL(�) =
∫
EA

(∫
π−1
L (�)∩A

dP�(λ)

)
ρL(�) dμL(�)

for A ∈ BΛ.
Note that P� is the conditional probability on Λ for the event defined by {λ |Q(λ) = Q(�)}.
We see that the disintegration theorem combined with the geometric structure induced

by the set-valued inverse of Q imports a significant amount of structure on any probability
measure PΛ on (Λ,BΛ) that is absolutely continuous with respect to μΛ. Indeed, PΛ is
uniquely determined by specifying P� valued on generalized contours π−1

L (�) for � ∈ L.
We now state the following.

Ansatz: We assume that for � ∈ L a probability density ρN ,(�; ·) is given on
the generalized contour corresponding to � such that

(4.3) dP�(λ) = ρN (�;λ) dλμN (�;λ), λ ∈ π−1
L (�) ∩A, A ∈ BΛ.

This yields the next result.
Theorem 4.5. Let (Λ,BΛ) be a measurable space and Q : Λ → D be a measurable map with

GD component maps. Assume that PΛ is a probability measure on (Λ,BΛ) that is absolutely
continuous with respect to μΛ and that the ansatz holds. There exists a unique probability
measure PΛ on (Λ,BΛ) that is absolutely continuous with respect to μΛ, and

(4.4) PΛ(A) =

∫
EA

(∫
π−1
L (�)∩A

ρN (�;λ) dλμN (�;λ)

)
ρL(�) dμL(�)

for A ∈ BΛ.
The approximation method described in section 4.2 can be used for any choice of density

ρN . However, we prefer a specific choice of density which amounts to assuming that a “non-
preferential” weighting determined by the volume measure is used to compute probabilities of
events inside of a contour event. Namely, we use the next formulation.

Standard choice for ansatz:

(4.5) ρN (�; ·) = 1

μN (�;π−1
L (�))

, � ∈ L.

In the case of a product Lebesgue volume measure on BΛ, our choice for the ansatz implies
a uniform density along generalized contours.

This choice is related to a fundamental question about modeling probability. Consider
a compact metric space with a volume measure. In the absence of any specific information
about probabilities of events in the metric measure space, is there a natural way to impose
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Figure 9. Left: Plot of D = Q(Λ) indicating the set of possible output values. The disc indicates a set of
possible measurement data I. Middle: Plot of the inverse density ρΛ corresponding to a uniform density on I.
Right: Cross section of the inverse density ρΛ corresponding to a truncated normal density on I.

a probability measure? Simplicity argues for apportioning probability to events according
to relative volume (measure) size. Compare to the discussion in section 3.1 dealing with set-
valued solutions of a linear map. We are applying this model choice in the generalized contours.
An important characteristic of this choice is that it respects some geometric properties of
the volume measure such as translation invariance and isotropy, e.g., that hold for a product
Lebesgue volume measure. Moreover, the same ansatz applies to any Q that may be considered
and applied without modification if the dimension of Q is changed, e.g., because data becomes
available on an additional quantity of interest. While any choice of density represents a priori
knowledge about the probability structure on (Λ,BΛ) that cannot come from observations on
the map Q, other choices involve assuming additional structure beyond that of (4.5).

Example 5. We consider the linear map in Example 1. We assume that the real data point
q is some point in the disc I of radius 0.1 in D centered at (0.4, 1.1); see Figure 9(left). The
support of the inverse is a “truncated” cylinder (middle plot of Figure 9). For the ansatz, we
set the conditional density along each generalized contour to be the reciprocal of its Euclidean
length in domain Λ. Since the lengths of the generalized contours vary, the resulting density
of PΛ is not uniform.

In the first computation, we assume that the data point q is distributed uniformly in I.
This gives the probability measure on (Λ, CΛ) defined by the density ρL(�) = 1

2π(0.1)2
1Q(�)∈I(�).

In Figure 9(middle), we plot the corresponding approximate inverse density ρΛ for a large
sampling of generalized contours.

In the second computation, we assume that q is distributed according to a truncated mul-
tivariate normal distribution centered in I ⊂ D. This gives

ρL(�) = ν exp((Q(�) − q0)Σ
−1(Q(�)− q0))1Q(�)∈I(�),

where Σ = .005I2×2, q0 is the center of disc I, and ν is a normalizing constant. Figure 9(right)
shows the corresponding approximate inverse density ρΛ.D
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We emphasize once more that our numerical approach for approximating the inverse den-
sity applies to any assumption for the ansatz.

4.2. Approximations of solutions. We turn to the approximation of the solutions of
stochastic inverse problems given by Theorems 4.2–4.5. There are several approximation
issues that need to be addressed in any practical computation involving PΛ arising from the
abstract theoretical development and numerical implementation. The fundamental approxi-
mation issues are

• approximation of events in BD,
• approximation of events in BΛ,
• approximation of events in CΛ.

The numerical approximation issues are
• approximation of PD and subsequently PΛ on partitions of D and Λ,
• error in numerical evaluation of the model.

In [5], we carry out a priori convergence analysis and a posteriori estimation analysis to deal
with both numerical approximation issues in the case of a single quantity of interest for a
somewhat different but related approximation. Aspects of that analysis are very similar for
multiple quantities of interest and the approximation in this paper. Hence, we assume that
the model solution can be evaluated exactly.

We approximate events in D and Λ by taking finite collections of generating events for the
σ-algebras BD and BΛ that satisfy a certain approximation property. We let {Ii} and {bj}
denote sequences of Borel sets generating BD and BΛ, respectively, and let {Ii}Mi=1 and {bj}Nj=1
denote a finite partition of D and Λ taken from these sequences. We assume that any event
in BD (respectively, BΛ) can be approximated in the corresponding measure μD (respectively,
μΛ) by such finite partitions. Since CΛ ⊂ BΛ, unions of elements in {bj}Nj=1 simultaneously
approximate events in CΛ and BΛ.

We employ two different types of generating sets. Following [2], we may use collections
of generalized “rectangles.” For typical metrics on R

n we can approximate events using
such rectangular cells (e.g., see Theorem 2.41 on p. 70 of [10]). However, the computational
performance of this approach is affected negatively as the dimension increases. We also employ
Voronoi cell tesselations based on a point process sampling of the domain [14]. This approach
works well in high dimensions.

We let ρD,M and ρΛ,N denote simple function approximations to the densities of PD and
PΛ on the partitions. We use these measure-theoretic approximations to prove the following.

Theorem 4.6. Suppose that Q : Λ → D is sufficiently smooth with GD component maps.
Given probability measure PD that is absolutely continuous with respect to μD and event A ∈
BΛ, there exists a sequence of approximations PN (A) using simple function approximations
to ρΛ,N and ρD,M requiring only calculations of volumes in Λ that converges to P (A) as
N,M → ∞.

Proof. By assumption, the Radon–Nikodym density ρD ∈ L1(D) has a piecewise-contin-

uous representation. There exists a partition {Ĩi}M̃i=1 of D such that ρD is continuous on each
Ĩi. On any Ĩi where ρD is bounded on the smallest compact set containing Ĩi, we define
g(q) := sup{ρD(q) : q ∈ Ĩi}. On the remaining Ĩi, we use the fact that ρD(q) ∈ L1(D), which

implies there exists an εi > 0 such that ρD(q) < g(q), with g(q) := νi‖q − q(i)‖−(m−ε)
2 on Ĩi,D
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where m is the dimension of D, νi is a constant, q(i) is a fixed point in Ĩi, and ‖·‖2 is the usual
Euclidean norm. Since μΛ(Λ) is finite, μD(D) < ∞ and g ∈ L1(D).

Now consider any refinement {Ii}Mi=1 of {Ĩi}M̃i=1, and define the simple function approxi-
mation,

ρD,M =

M∑
i=1

pi1Ii(q), pi =

∫
Ii

ρD dμD.

The function g ∈ L1(D) satisfies the inequality ρD,M ≤ g for all M . Moreover,
∫
ρD dμD =∫

ρD,M dμD for all M . Finally, if we consider a sequence of such refinements of {Ĩi}M̃i=1 corre-
sponding to increasing M , the corresponding simple function approximations converge to ρD
pointwise.

For any refinement {Ii}Mi=1 of {Ĩi}M̃i=1, we let Ai := Q−1(Ii) ∈ BL denote the set of induced

generalized contours. By construction, {Ai}Mi=1 defines a partition of L where μL(Ai) > 0 for
each i, and μL(Ai ∩Aj) = 0 for any i �= j since any intersection between Ai and Aj can occur
only on their boundaries, which define a set of zero μL-measure. Furthermore, the interior of
any Ai contains all of the unique generalized contours associated with the interior of Ii. By
the equivalence relation, we can also identify each Ai as a contour event in (Λ, CΛ). From
Theorem 4.3, it follows that

ρL,M(C) ≈
M∑
i=1

pi1Ai(C), C ∈ CΛ,

defines an approximation to the unique solution to the stochastic inverse problem in (Λ, CΛ).
To build the approximation of events in Λ, we identify each bj as a member of a particular

contour event Ai using, for example, the value of Q at the barycentric center of each bj or the
expected value of Q over the image of bj in D, and setting P (bj) = P (Ai)μΛ(bj)/μΛ(Ai) for
bj ⊂ Ai. This results in the simple function approximation

(4.6) ρΛ ≈ ρΛ,N :=

N∑
j=1

P (bj)1Λ(λ).

For a fixed M , by construction, ρΛ,N → ρΛ pointwise and there exists a function h ∈ L1(Λ)
such that ρΛ,N ≤ h for all N .

To prove convergence, we apply the Lebesgue dominated convergence theorem to a se-
quence of such approximations ρD,M and ρΛ,N for increasing M and N .

We summarize this stage of the approximation in Algorithm 1. To simplify notation, we
let V denote the volume matrix with ij-component set equal to the volume of Ai∩ bj. We can
use V to compute ratios of volumes in a simple way. Specifically, the ratio of volume of bj in
Ai is given by Vij/

∑
j Vij , and the probability of bj is approximated by

∑
i pi

(
Vij/

∑
j Vij

)
.

Once the probabilities of cells {bj} have been approximated in Algorithm 1, we may
estimate P (A) for arbitrary event A ∈ BΛ in various ways, e.g., using one of the following:

• inner sums, i.e., sum of P (bj) for all j ∈ {1, . . . , N} such that bj ⊂ A;
• outer sums, i.e., sum of P (bj) for all j ∈ {1, . . . , N} such that bj ∩A �= ∅;
• average of inner and outer sums; or
• ∫

A ρΛ,N dμΛ, where ρΛ,N =
∑N

j=1 P (bj)1bj (λ).
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Algorithm 1. Approximation to inverse density.

Generate approximating sets {Ii}Mi=1 and {bj}Nj=1.

Fix and normalize the simple function approximation ρD,M =
∑M

i=1 pi1Ii(q).

Let {Ai}Mi=1 ⊂ Λ denote the induced regions of generalized contours partitioning Λ.
for j = 1, . . . , N do

for i = 1, . . . ,M do
Compute μΛ(Ai ∩ bj) and store as ij-component in matrix V .

end for
end for
for j = 1, . . . , N do

Set P (bj) to
∑M

i=1 pi(Vij/
∑N

j=1 Vij).
end for

Note that in Algorithm 1 it is straightforward to handle the case of m = n GD quantities of
interest due to the use of simple function approximations. In this case, the “volume measure”
on the generalized contours is a point mass distribution, and the volume measure associated
with the transverse parameterization/measurable data is simply μΛ. This implies that for a
given Ii, the corresponding Ai defines a set of positive volume measure with respect to μΛ

that consists of points in Λ defining the generalized contours.
Example 6. We consider the nonlinear vector-valued map from Example 3. We assume

that there is a nominal true value of Q(λ) = q = (0.75, 0.80), while measured values are drawn
from a truncated normal distribution Ñ(μQ,ΣQ) on D with

μQ =

(
0.75
0.80

)
and ΣQ =

(
0.025 0
0 0.01

)
,

where D is shown in Figure 5(left). The value of λ3 is uniquely determined by the vector-
valued map for any fixed output, whereas the values of λ1 and λ2 lie on the generalized contour
consisting of the circle of fixed radius in the horizontal plane of the known λ3-value. We apply
Algorithm 1 using a 20 × 20 uniform partition {Ii} of D and 503 uniformly sized cells {bj}
to partition Λ. We show the two-dimensional marginals of ρΛ(λ) in Figure 10. In Figure 11,
we plot the two-dimensional marginals of ρΛ(λ) computed using observations on only one of
the components to the vector-valued quantity of interest. As the dimension of the generalized
contours decreases, corresponding to an increase in the number of quantities of interest, a
smaller portion of the volume receives a larger portion of the probability; compare the colorbars
in Figures 10 and 11.

We conclude by describing the alterations to Algorithm 1 required to treat a different
density in the ansatz. We assume that a family of probabilities {P�} is given on the generalized
contours corresponding to points in L, as described in Theorem 4.5. We define a simple
function approximation to the conditional densities along the regions of generalized contours
by

(4.7)
M∑
i=1

Ki∑
k=1

uik1LAi∩Ek (λ).
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Figure 10. Plots of marginal densities of ρΛ(λ) in the λ1λ2 (left), λ1λ3 (middle), and λ2λ3 (right) domains.
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Figure 11. Top: Plots of marginal densities of ρΛ(λ) in the λ1λ2 (left), λ1λ3 (middle), and λ2λ3 (right)
domains when inverting the marginal density on Q1(λ) = λ2

1 + λ2
2 + λ2

3. Bottom: Plots of marginal densities
of ρΛ(λ) in the λ1λ2 (left), λ1λ3 (middle), and λ2λ3 (right) domains when inverting the marginal density on
Q2(λ) = arccos(λ3/

√
λ2
1 + λ2

2 + λ2
3).

Here, {Ek}Ki
k=1 denotes a partition of a region of induced generalized contours Ai such that

for a fixed Ai the function
∑Ki

k=1 uik1LAi∩Ek (λ) defines the simple function approximation to
P� for � ∈ EAi . In other words, the conditional densities defined by P� are used to weight
the volumes of Ai ∩ Ek. Now, the ansatz will substitute for μΛ the approximation of (4.7) in
the computation of a simple function using the partition {bj}Nj=1. The ratios of volume are

computed with respect to the partition defined by ∪i {Ek}Ki
k=1 and are weighted by uik. Use

of (4.7) in defining P (bj) leads to the proportion of the conditionally weighted volume in EkD
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that comes from bj given by

(4.8)

Ki∑
k=1

uik

⎛
⎝ V

(i)
jk∑N

j=1 V
(i)
jk

⎞
⎠ .

In other words, for a fixed i, (4.8) defines a new approximation to the conditional densities
defined on the region of induced generalized contours denoted Ai with respect to the cells {bj}
used to approximate Ai.

The final approximation and convergence follow as above. We summarize the approxima-
tion to the unique density ρΛ in Algorithm 2 below.

Algorithm 2. Approximation to exact parameter probability distribution.

Generate approximating sets {Ii}Mi=1 and {bj}Nj=1.

Fix and normalize the simple function approximation ρD,M =
∑M

i=1 pi1Ii(q).

Let {Ai}Mi=1 ⊂ Λ denote the induced region of generalized contours partitioning Λ.

Fix the simple function approximations
∑Ki

k=1 uik1Ai∩Ek(λ) to conditional densities defined
by P� on each Ai.
for j = 1, . . . , N do

for i = 1, . . . ,M do
for k = 1, . . . ,Ki do

Compute μΛ(bj ∩ Ek) and store in the jk component of matrix V (i).
end for

end for
end for
for j = 1, . . . , N do

Set P (bj) to
∑M

i=1 pi
[∑Ki

k=1 uik
(
V

(i)
jk /

∑N
j=1 V

(i)
jk

)]
.

end for

4.3. Relation to other inverse problems and solution methods. We briefly comment on
the relation between the stochastic inverse problem we solve and two other inverse problems
and solution methods.

A statistical inverse problem for an unknown process. A classic statistics inverse problem
deals with the situation in which the underlying process is unknown except for some experi-
mental data. The experimental data that can be gathered is limited: it is described in terms
of finite collections of measurements on specified quantities of interest at a specified group of
measurement sites. The underlying process often includes natural stochastic variation, while
the experimental observations are subject to errors that behave stochastically, which means
that repeated experiments generally yield different data. The goal of statistical analysis is
to create and analyze a statistical model that can be used to make inferences about process
behavior that is unobserved, e.g., interpolating at locations other than the measurement sites.
The fact that having observations at only a fixed set of sites limits the range of scales in be-
havior that can be described, and the desire to avoid overfitting to a particular data set, both
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provide motivation for imposing smoothness or regularization assumptions in the construction
of a statistical model and in solving the inverse problem for parameters in a statistical model.

The situation is significantly different in the case that the underlying process is deter-
mined by a known deterministic model, which can be queried to any desired resolution given
sufficient computational resources. For one thing, uncertainty about process behavior on any
scale can be eliminated by increasing the number and/or arbitrarily changing the location
of measurement/computational sites. For another, repeated evaluations of the model process
yield the same set of data values. The only possible source of stochastic variation in the
problem comes if there is variation in the input data, yielding variation in the output data.
This raises significant theoretical difficulties with the straightforward application of statistical
modeling and analysis techniques.

Regularization in deterministic inverse problems. The field of deterministic inverse problems
is dominated by methods based on regularization. In this approach, the model is regularized,
e.g., by adding an invertible operator to the original model operator in a linear case, to obtain a
new model that has a well-posed inverse in the original input domain. In the best of cases, the
solution produced by the altered model converges to a representative element of a set-valued
inverse of the original model in the limit of vanishing regularization.

Regularization destroys the geometry of the generalized contours, making it impossible
to solve the stochastic inverse problem into (Λ,BΛ, μΛ) that we have posed. This represents
a serious loss of information about the model behavior. By way of analogy, when hiking
backcountry throughout a mountainous region, a full contour map of elevations is required.
Knowing approximate elevations along some particular trail or in a small neighborhood of a
particular point is useless.

5. Numerical examples. We present two examples illustrating aspects of the formulation
and solution of the stochastic inverse problem.

Accuracy study: Elliptic equation. The first example presents a numeric demonstration
of the approximation properties of the solution algorithm. There are multiple ways to evaluate
the accuracy of an approximate solution of the stochastic inverse problem. Our interest is
measuring accuracy of the computed probability distribution on the parameter space, which
is of primary physical importance in a number of applications. Of course, given information
about the parameter input values, we may also then make predictions about the output of
the model corresponding to that input information. In this case, we evaluate accuracy by
considering the predicted behavior. However, the second approach is relatively weak given
that existence of set-valued solutions.

So, we design a test in which we attempt to “recover” a given distribution on Λ that
produces a distribution on D. The model consists of an elliptic differential equation,

(5.1)

{
−((x2e−λ1x + 0.05)u′)′ + λ2u

′ = (1− x) tanh(4(x − λ3)) + sin(5πλ4x), 0 < x < 1,

u(0) = u(1) = 0,

where λ1 affects the diffusion, λ2 affects convection, and λ3 and λ4 determine properties of
the forcing data. We assume that Λ := [1, 5]× [0.1, 0.3] × [0, 1]× [0, 2]. We numerically solve
(5.1) with a second order finite element method with 51 uniform elements partitioning [0, 1]
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Figure 12. Left: Exact probability of each cell bi from a 20 × 20 grid of cells. Middle and right: The
approximate probabilities computed when using only the first Fourier coefficient and spatial average of u(x;λ),
respectively.
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Figure 13. Left: Approximate probability of each bi from the 20 × 20 grid of cells computed using approx-
imations to generalized contours from the 2 × 1 vector-valued map Q(λ). Middle: Error in the left-hand plot
of probabilities from exact probabilities of these cells. Observe the order of magnitude change in the colorbar
of the right plot from the other two. Right: A scatterplot of 3000 i.i.d. samples from ρD defining associated
generalized contours used in computations of probabilities here and in the middle and right plots of Figure 12.
The propagation of uniform densities leads to a complex distribution.

employing lumped mass quadrature, which provides sufficient accuracy for all solutions so as
to avoid biasing results by numerical error.

We consider four quantities of interest: Q1(λ) and Q2(λ) denote the first and second
Fourier coefficients of u(x;λ), respectively; Q3(λ) denotes the average spatial value of u(x;λ);
and Q4(λ) = u(0.2;λ). In all cases, we choose a uniform density in the input parameters
to propagate forward to obtain a density on the chosen quantities of interest that is then
inverted back to the parameters. The resulting output distributions are quite complex; see,
for example, Figure 13.

A two-parameter case. We first fix λ2 = 0.1 and λ4 = 1 and let λ1 ∼ U([1.5, 2.5]) and
λ3 ∼ U([0.5, 1]). The resulting density ρΛ has small support relative to the domain Λ; see
Figure 12(left). As mentioned, the corresponding probability measure on D is quite complex;
see Figure 13.

We first invert using observations on only one of Q1(λ) or Q3(λ) by applying Algorithm
1 with 100 equally spaced bins {Ii} discretizing D and 20 × 20 equally sized cells {bi} to
partition Λ. We generate the approximate ρD using 105 samples, while we use 6400 solutions
of (5.1) in the point sample-based approach [6] to approximate the inverse distribution. We
see that the resulting approximations to ρΛ have supports that contain the support of the
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Figure 14. Top: Approximate probabilities of 20× 20 cells in λ1λ4 (left), λ2λ4 (middle), and λ3λ4 (right)
subdomains computed from approximate marginal to computed inverse density. Bottom: Errors in probabilities
of the top-row plots in the same planes computed by differencing with the exact inverse density.

original density, but are larger; see Figure 12. This is an effect of the set-valued inverses in
this case.

Next, we invert using observations on Q = (Q1, Q3)
� using the same solutions to (5.1)

and cells {bi} partitioning Λ. The resulting approximate density is close to the exact density
ρΛ. The error in computation of the probabilities of each of the cells {bi} is shown in the
center plot of Figure 13.

A four-parameter case. We now let all four parameters vary stochastically with λ1 ∼
U([1.5, 2.5]), λ3 ∼ U([0.5, 1]), λ2 ∼ U([0.1, 0.2]), and λ4 ∼ U([0.7, 1.2]) to generate a prob-
ability measure on D by forward propagation. We use Q = (Q1, Q2, Q3, Q4)

� to invert the
observed density on D into Λ. The observed density ρD is discretized in the four-dimensional
data space D in a way analogous to the two-dimensional case using Monte Carlo integration to
approximate the probabilities of the four-dimensional Voronoi cells partitioning D implicitly
defined by the pointwise values of Q(λ) at each solution to (5.1). We use exactly the same
number of solutions to (5.1) as before and bin the same number of i.i.d. samples of ρD. To
illustrate the approximate density, we plot some of the representative approximate probabili-
ties on grids of 20× 20 cells partitioning each two-dimensional configuration of Λ along with
the errors in Figure 14. Comparing the error plots of Figure 14 to the error plot of Figure
13, observe that the same order of accuracy is maintained as before, despite doubling the
dimension of the stochastic parameter space and maintaining the same number of solutions
as in (5.1).

Extensions to higher dimensions: Storm surge and bathymetry. Mathematical mod-
els of storm surge are described by the shallow water equations (SWE) derived from the
depth-averaged incompressible Navier–Stokes equations (see, e.g., [16]) and solve for water
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Figure 15. Left: The mesh for the Gulf of Mexico used in all simulations, consisting of 8, 006 nodes
and 14, 269 elements; figure modified from [4]. Right: The Louisiana coastline subdomain seeing the highest
surge, including near-shore areas with mean bathymetry values of 100 m and 18 observation stations marked by
asterisks.

elevation (or water depth) and velocities. Common quantities of interest are maximum water
elevations in the spatial domain. For storm surge applications, these models are solved on
complex physical domains. These models are forced primarily by tides, winds, and waves,
with wind stresses being the dominant forcing during a hurricane. We use the state-of-the-
art advanced circulation (ADCIRC) model [13], which discretizes the SWE using finite ele-
ment methods defined on unstructured meshes in space and finite difference schemes in time.
For a description of the ADCIRC model and its application to storm surge, see [3, 9]. We
use a dynamic Holland wind model [12] to generate a parametric wind field of Hurricane
Katrina and tidal forcing on the open boundary of the domain (see Figure 15) for all sim-
ulations in this study. The atmospheric hurricane data (central pressure, maximum wind
speed, radius of maximum winds) and the best track data are available on the NOAA archive
(ftp://ftp.tpc.ncep.noaa.gov/atcf/archive/).

Accurate knowledge of the bottom topography, coastal elevation, and friction characteris-
tics, both under water and on potentially inundated land, are needed but not always available.
In this study, the uncertain model parameter is the bathymetry in a subdomain around the
southeastern Louisiana coastline (see Figure 15). The given grid defines a bathymetry field as
nodal attributes. We consider this given bathymetry field as the “mean field” and use a 30-
term truncated Karhunen–Loève expansion (KLE) to represent the field around the logarithm
of the mean [11]. The coefficients of the KLE define uncertain parameters λ ∈ Λ ⊂ R

30, with
Λ ⊂ R

30 described below. The KLE was computed using a Gaussian kernel with correlations
and variances that vary smoothly with the mean bathymetric values, so there is increased vari-
ability in the perturbations near shore where there is increased model sensitivity to changes
in bathymetry.

We use a single perturbation to define the target “original” bathymetry field (denoted λ̃)
and generate maximum surge data at 18 simulated buoy observation stations defining D ⊂ R

18

(see Figure 15). To define ρD we use an additive noise model with independent Gaussian
distributions and standard deviations given as functions of the recorded surge. We assume
that measurement error is unbiased with a 95% confidence interval of length approximately
8 cm for 4 m of surge. Because the dimension of D is 18, the induced regions of generalized
contours are defined by unions of 12-dimensional manifolds.

D
ow

nl
oa

de
d 

07
/2

1/
14

 to
 1

29
.7

4.
16

1.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ftp://ftp.tpc.ncep.noaa.gov/atcf/archive/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC INVERSE PROBLEM 199

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Rankings of probabilities

Pr
ob

ab
ili

ty
 o

f i
nd

uc
ed

 re
gi

on

−90 −89.5 −89 −88.5 −88 −87.5 −87 −86.5
28.5

29

29.5

30

30.5

 

 

0

0.05

0.1

0.15

0.2

Figure 16. Left: Probabilities of the highest 50 induced regions of 12-dimensional generalized contours.
Right: The magnitude of the maximum amount of relative spatial variability of bathymetry within the high
probability induced region containing the original bathymetry field.

The eigenfunctions computed from the KLE are orthonormal L2 functions on the spatial
domain. This implies that any L2 bound on the distance of the perturbations to the log of the
original bathymetry imposes an l1 bound on the coefficients λ and subsequently defines the
domain Λ ⊂ R

30. For any specific coefficient λi in the KLE, we allow max |λi− λ̃i| = 0.75 and
max ‖λ − λ̃‖l1 = 3. Since we use the KLE to define perturbations to the log of the original
bathymetry, this means that any single perturbed bathymetry field can have pointwise values
ranging from approximately 1/20 to 20 times the original bathymetric values.

We compute a total of 5000 simulations. The first simulation is used to define the “perfect”
noise-free data, and the remaining 4999 simulations correspond to 4999 uniformly sampled
parameters from Λ. The simulations were executed in parallel on the cluster Euclid at the
University of Texas at Austin, with each simulation using eight processors. The total wall
time for the experiment including reading/writing all output/input files in MATLAB and
submitting jobs to the queue was under 14 hours and 10 minutes.

We use simulated data from 500 of the 4999 simulations to define (implicitly) a partitioning
of D and compute a simple function approximation to ρD on this partition using Monte Carlo
integration. Specifically, we “bin” 105 i.i.d. samples of ρD within this partition. We follow
the remaining steps of Algorithm 1 to compute the probabilities of the induced regions of
generalized contours approximated by the 4999 samples of Λ.

This example raises the difficult problem of how to present the solution of a stochastic
inverse problem in high dimensions. Once the dimension is larger than 4 or 5, plots of marginals
become relatively meaningless. It becomes necessary to present important characteristics of
the inverse distribution.

For example, a key issue is determining the regions of highest probability, given the ob-
servations on the output of the model. With the partition of ρD as defined above, there are
four induced regions of generalized contours with probabilities ranging from just under 10%
to approximately 14%, and these are significantly larger than the probabilities of all other in-
duced regions (see Figure 16(left)). The induced region of generalized contours with the third
largest probability (of approximately 10.8%) contains the original nominal “true” bathymetry
field.

As one test of accuracy, we note that various refinements/coarsenings of the approxima-
tion to ρD (i.e., using more or fewer samples to discretize D) lead to different values of the
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probability of the induced region of generalized contours that contains the original nominal
“true” bathymetry field, but the ranking of the approximate contour event that contains this
value is consistently in the three highest-probability contour events.

Another significant issue for solutions of stochastic inverse problems is the degree of vari-
ability of physical conditions within a given contour event and between two contour events of
significantly different probabilities. For example, if there is a low degree of variability within
a given contour event, it is reasonable to argue that the choice of a particular representative
element to represent points in the event is immaterial. To quantify the amount of variability
within or between induced regions of generalized contours, we show plots of the magnitude
of spatial variability of the corresponding perturbed bathymetry fields relative to the original
bathymetry corresponding to the variability of points in Λ ⊂ R

30. In Figure 16(right) we
show the magnitude of the maximum amount of relative spatial variability within the induced
region of generalized contours containing the original value. This variability was determined
by maximizing the distance of points within the induced region from the original value. We
observe for the bathymetry field defined by this point within the induced region that over
the majority of the physical domain there is less than a 10% difference in bathymetric values
relative to the original values. There exist two relatively small and isolated areas along the
northern part of the domain with bathymetries differing between 15 and 20% relative to the
original values. These two areas are close to the coastline and located roughly 40 km away
from the northernmost elevation stations used in the simulation. This suggests that the ad-
dition of GD quantities of interest in these areas can improve results further, and this will be
the topic of future study.

In the top two plots of Figure 17, we show the magnitudes of the relative spatial variability
between the region containing the original value and the nearby highest probability induced
regions of generalized contours. In the bottom two plots of Figure 17, we show the magnitudes
of the relative spatial variability between the region containing the original value and low
probability induced regions of generalized contours. We observe that there are significant
increases in spatial variability relative to the original value in low probability regions compared
to high probability regions. Generally, samples from the most probable regions of generalized
contours provide estimates closer to the original bathymetric field compared to samples from
less probable regions of generalized contours.

Appendix A. The disintegration theorem. A development of the disintegration theorem
for probability measures is given in [8]. We provide a summary closely following the presen-
tation in [7], but updated for our notation. Below, Q is a locally differentiable map with GD
components between measurable spaces (Λ,BΛ) and (D,BD), Ψ is a σ-finite measure on BΛ,
and μD is a σ-finite measure on BD. A disintegration is defined in [7] as the following.

Definition A.1. The measure Ψ on the measurable space (Λ,BΛ) has a disintegration {Ψq}
with respect to Q and μD, or a (Q,μD)-disintegration, if

(i) Ψq is a σ-finite measure on BΛ concentrated on {Q = q}, that is, Ψq {Q �= q} = 0, for
μD-almost all q,

and, for each nonnegative measurable f on Λ,
(ii) q �→ Ψqf is measurable;
(iii) Ψf = μq

D(Ψqf).D
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Figure 17. The top two plots show the magnitude of the relative spatial variability of bathymetry between
the nearby highest probability induced regions of generalized contours and the region containing the original
bathymetry field. The bottom two plots show the magnitude of the relative spatial variability of bathymetry
between induced regions of generalized contours with low probability and the region containing the original
bathymetry field.

We call {Ψq} the disintegrating measures.
From [7], we have the following existence theorem.
Theorem A.1. Let Ψ be a σ-finite Radon measure on a metric space Λ. If BD is countable

generated and contains all the singleton sets {q}, then Ψ has a (Q,μD)-disintegration. The
Ψq measures are uniquely determined up to an almost sure equivalence.

The disintegrating measures are only probabilities, i.e., conditional probabilities, if we can
standardize the disintegrating measures. Thus, if 0 < μD(D) < ∞, then we can always make
the disintegrating measures into probabilities. This is a fact exploited by the ansatz. It is also
used in [7] to prove the following.

Theorem A.2. Let Ψ have a (Q,μD)-disintegration {Ψq}, with σ-finite Ψ and μD.
(i) The image measure QΨ is absolutely continuous with respect to μD with density ΨqΛ.
(ii) The measures {Ψq} are finite for μD-almost all q if and only if QΨ is σ-finite.
(iii) The measures {Ψq} are probabilities for μD-almost all q if and only if μD = QΨ.
(iv) If QΨ is σ-finite, then (QΨ) {ΨqΛ = 0} = 0 and (QΨ) {ΨqΛ = ∞} = 0. For QΨ-

almost all q, the measures

Ψ̃q(·) = Ψq(·)
ΨqΛ

{0 < ΨqΛ < ∞}

are probabilities that give a Q-disintegration of Ψ.
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