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a b s t r a c t

We present a comprehensive assessment of nodal and hybrid modal/nodal discontinuous
Galerkin (DG) finite element solutions on a range of unstructured meshes to nonlinear
shallow water flow with smooth solutions. The nodal DG methods on triangles and a ten-
sor-product nodal basis on quadrilaterals are considered. The hybrid modal/nodal DG
methods utilize two different synergistic polynomial bases on polygons in realizing the
DG discretization; orthogonal basis functions constructed by the Gram–Schmidt process
are used as trial and test functions in a DG weak formulation; and a nodal basis is used
as an efficient means for area integration. These are implemented on triangular, quadrilat-
eral, and polygonal elements. In addition, we discuss aspects to be considered in order to
achieve the so-called well-balanced property that preserves steady state at rest with a spa-
tially varying bed. The performance in terms of accuracy and computational cost is demon-
strated using h and p convergence studies on a nonlinear problem with a manufactured
solution and the nonlinear Stommel problem with flat and non-flat beds. To assess the per-
formance of quadrilateral and polygonal elements in comparison to triangular elements,
we consider a setting in which a quadrilateral mesh, a mixed triangular–quadrilateral
mesh, and polygonal mesh are derived from a given triangular mesh and vice versa. The
tests conducted reveal the merit of using the quadrilateral elements in terms of computa-
tional cost per accuracy and computing time. More importantly, the numerical results
clearly show that high order schemes significantly improve the cost performance for a
given level of accuracy, with cubic or bi-cubic interpolants particularly achieving dramatic
improvements in accuracy as compared to linear and quadratic interpolants, with dimin-
ishing benefit as p > 3.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The shallow water equations (SWE) are used extensively in modeling many important physical phenomena, such as hur-
ricane induced flooding, tides, riverine flows, tsunami waves, dam breaks, and many others. The equations can be coupled
with a range of transport equations to model problems such as salinity, heat, and contaminant movement. Simulations of
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such environmental flow problems frequently involve large, geometrically complicated domains and integration over long
periods of times. An accurate and efficient solution of the SWE is therefore crucial in numerical simulations. While relatively
young in comparison with more conventional approaches, discontinuous Galerkin (DG) finite element methods (see [1,2] for
reviews of DG methods) have increasingly become a powerful alternative for solving the SWE [3–12]. Conceptually similar to
finite volume methods, DG methods inherently have the property of being conservative on the element level, making them
ideal for coupling flow and transport models. Additional notable advantages of DG methods include the ease of constructing
high order schemes on unstructured meshes and high scalability for parallel implementation when used in conjunction with
explicit time integration schemes. Since DG methods use a discontinuous approximation, they are able to accommodate non-
conforming meshes and the use of different bases in each element, thus rendering them naturally well suited for a discret-
ization with adaptive h (mesh) and p (polynomial order) refinements.

While DG methods possess a number of favorable properties, one major drawback in comparison to continuous Galerkin
(CG) methods on a given mesh is the larger number of degrees of freedom, which consequently translates into greater com-
putational costs. The preliminary comparison study in [13] of CG and DG methods for the SWE shows that, when using linear
interpolation on identical meshes, the cost per time step of the DG approach on serial machines is approximately four to five
times more expensive than the CG approach. The subsequent study in [6] finds that the DG approach is generally more effi-
cient in terms of achieving a specified error level for a given computational cost and in terms of scalability on large-scale
parallel machines. Note that [13,6] use triangular meshes in their studies.

A main objective of this work is to examine the numerical performance of high-order DG schemes in comparison to lin-
ear-element DG schemes for the nonlinear SWE. Here, a high-order method refers to a scheme that is formally higher than
second order. We adopt this definition since widely-used SWE solvers for environmental flow applications are mostly first or
second order accurate. Note that, in a DG context, such a scheme is devised by using a local expansion polynomial of degree
greater than unity, i.e., p > 1. In particular, we examine the numerical performance of two DG schemes: a nodal DG scheme
[14] and hybrid modal/nodal DG scheme [15]. These two schemes use different variants of polynomial bases (hence their
namesake) in the approximation. The nodal DG scheme is based on a Lagrange polynomial basis. The Lagrange polynomial
basis functions possess an interpolation property, i.e., their value is unity at their associated nodes and vanishes at other
nodes. The nodal DG scheme takes advantage of this property in constructing an efficient quadrature free approach for eval-
uating integral terms appearing in the DG weak formulation. The hybrid modal/nodal scheme, devised by Gassner et al. [15]
is based on a pair of the so-called polymorphic nodal bases on a polygon which consists of an orthogonal modal basis and its
nodal basis counterpart. The former is utilized in realizing the DG discretization and the latter is employed in evaluating
integral terms. We assess the performance of these DG schemes, in terms of accuracy, computational time, and computa-
tional cost per accuracy, through their application to test problems. Note that, in this work, we limit our test problems to
those with sufficiently smooth solutions on a large simple domain. Generally, problems with smooth solutions permit
high-order schemes to perform at their best. Although they do present fewer numerical challenges, smooth-solution prob-
lems are in fact frequently encountered in a large class of environmental flow applications that includes tides, hurricanes,
non-breaking waves, and many others.

This work is also motivated in part by an observation that a quadrilateral element may be obtained by merging two adja-
cent triangular elements and vice versa, two triangular elements formed by bisecting a quadrilateral element. In this mesh
setting, a mesh of quadrilateral elements would consist of approximately half as many elements as a mesh of triangular ele-
ments. The number of edges in the quadrilateral mesh would be approximately two-thirds that of the triangular mesh. Since
evaluating area integrals and edge integrals represents the major computational cost in DG methods, the use of quadrilateral
elements would appear to be an appealing means to improve the computational efficiency of DG schemes. To gain more in-
sight into this idea, we examine the performance of DG solutions with expansion basis functions defined for various element
shapes. More specifically, for the nodal DG methods, we consider the Lagrange nodal bases on triangles and tensor-product
nodal bases on quadrilaterals. For the hybrid modal/nodal DG methods, we consider not only the DG solutions of polymor-
phic bases on triangular and quadrilateral elements but also polygonal elements.

One issue that arises in DG schemes and other methods based on the SWE in conservative form concerns their ability to
preserve steady state at rest in a problem with a spatially varying bed, the well-balanced property [16,17]. A straightforward
treatment of the bed term may not balance exactly (at the computational level) the gradient flux term and the bed term and
thus may lead to a failure in maintaining the steady state at rest. It is demonstrated in [17] that the well-balanced property
generally yields a more accurate solver. In a DG framework, several well-balanced schemes have been devised, see e.g., [18–
21,11,9] and references therein. In this work, we discuss treatment and realization aspects to be considered in order to
achieve a well-balanced property in high-order DG scheme based on nodal bases.

This paper is organized as follows. In Section 2, we provide a description of the two-dimensional nonlinear SWE. Section 3
summarizes a general framework of the DG method employed in this work. Subsequently, we describe two different bases to
use with the DG method, namely, the so-called polymorphic nodal bases and the nodal bases. In Section 4, we present a per-
formance assessment of the hybrid modal/nodal DG schemes and the nodal DG scheme through two test problems: a non-
linear problem with a smooth manufactured solution and the nonlinear Stommel problem. Since the manufactured-solution
problem has an exact solution, it permits an accurate measure of the error. We therefore use this problem in a comprehen-
sive performance study (Section 4.2). In Section 4.3, we report numerical results of the nodal DG solution to the nonlinear
Stommel problem with a flat bed as well as a non-flat bed. The non-flat bed test case is also employed in the study of the
well-balanced property. Although it has a relatively simple structure, the nonlinear Stommel problem contains all the terms
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Fig. 1. Schematic diagram of the free surface and bathymetry.
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present in realistic applications, including the Coriolis force, surface wind stress, and bottom friction. Conclusions from the
study are drawn in Section 5.

2. Governing equations: shallow water equations

We consider the two-dimensional nonlinear SWE which consist of the depth-averaged continuity, x-, and y-momentum
equations written in conservative form as follows,
@q
@t
þr � FðqÞ ¼ sðq; x; tÞ ð1Þ
where the vector of the conserved variables q, the shallow water flux F ¼ ðf ðqÞ; gðqÞÞ, and the vector of forcing terms s are
q ¼
H

uH

vH

0B@
1CA; f ¼

uH

u2H þ 1
2 gH2

uvH
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1CA; g ¼
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uvH
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2 gH2

0B@
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sðq; x; tÞ ¼
0
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@x þ Fx

gH @zb
@y þ Fy

0B@
1CA;

ð2Þ
respectively. Here, Hðx; tÞ denotes the total water column height, u and v represent the depth-averaged velocity in the x- and
y-directions, respectively, g is the magnitude of the gravitational acceleration, zbðxÞ represents the bathymetric depth mea-
sured positive downwards from a horizontal reference (see Fig. 1). Fx and Fy denote forcing terms in the momentum equa-
tions which may be present e.g., Coriolis force, bottom frictional stresses, surface stresses. Note that, in this study, we
consider the effect of momentum diffusion from turbulence negligible and the terms describing such an effect are excluded
from the equations.

3. Methodology

3.1. Discontinuous Galerkin methods for hyperbolic balance laws

We first describe a framework of the specific DG formulation employed in this study. For simplicity of presentation, we
describe a DG discretization of 2-dimensional scalar hyperbolic balance laws of the form
@uðx; tÞ
@t

þr � f ðuðx; tÞÞ ¼ sðuðx; tÞ; x; tÞ; ðx; tÞ 2 X� ½0;1Þ; X 2 R2; ð3Þ
where uðx; tÞ is a conserved variable, f ¼ ðfx; fyÞ is a nonlinear flux with fx and fy denoting a flux function in the x- and y-direc-
tion, respectively, and sðu; x; tÞ is a (non-stiff) source term. A DG discretization of the SWE (1) is a straightforward extension
of the procedure for discretizing (3). However, we note that the bed-slope term requires additional attention in order to ob-
tain a scheme that preserves still water (see Section 4.3.2.1 for discussion on this issue). To discretize (3) using DG methods,
the domain X is subdivided into a set of finite non-overlapping elements. Let T h denote such a set of elements. The solution u
is then replaced by a discontinuous approximate solution uh which, in each element K 2 T h, belongs to a finite dimensional
space VðKÞ. The approximate solution on the element K is determined by requiring that,
Z

K

@uh

@t
vdx�

Z
K

f ðuhÞ � rvdxþ
Z
@K

bf � nvds ¼
Z

K
sðuh; x; tÞvdx ð4Þ
for all v 2 VðKÞ, where n represents the outward-pointing unit normal vector. The so-called numerical flux bf , also known as
the Riemann solver, resolves the flux f ðuhÞ being multiply-defined on the element boundary arising from the approximation
being discontinuous across the element interface. The numerical flux, which depends on the traces from both sides of the
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element interface, is essential for the stability, convergence, and efficiency of the DG method (see examples of different
numerical fluxes in e.g., [22,23]). Note that the coupling between the approximate solution in K and in its immediate neigh-
bors enters the weak formula (4) only through the edge integral term.

Suppose here that a finite dimensional space VðKÞ (with desirable properties) is chosen for each element K and that
fe/K

mðxÞgm¼1;...;Np
forms a basis of VðKÞ, where Np denotes the dimension of the space VðKÞ. The approximate solution, when

restricted to K, is then defined by
uhjK ¼
XNp

m¼1

euK
mðtÞe/K

mðxÞ; x 2 K; ð5Þ
where euK
mðtÞ represents the time-dependent expansion coordinates. The global approximate solution corresponds simply to a

direct sum of (5) over all elements. By adopting this basis, the local statement (4) for the element K reduces to the following
system of ordinary differential equations (ODEs):
XNp

n¼1

MK
m;n

deuK
n

dt
�
Z

K
fxðuhÞ

@e/K
m

@x
dx �

Z
K

fyðuhÞ
@e/K

m

@y
dxþ

Z
@K

bf h � ne/K
mds ¼

Z
K

sðuh; x; tÞe/K
mdx; m ¼ 1; . . . ;Np; ð6Þ
where Mm;n, an entry of the element mass matrix, is defined by
MK
m;n ¼

Z
K

e/K
mðxÞe/K

n ðxÞdx: ð7Þ
Note that the superscript K is used to indicate an affiliation of the basis functions and their expansion coordinates with the
element K. Hereafter, this superscript is dropped for notational simplicity.

The area and edge integrals are conventionally evaluated by using a quadrature rule; for example, the area integral
involving fxðuhÞ is realized through
XNc

r¼1

wc;r fxðuhÞ
@e/m

@x

! �����
xc;r

;

where ðwc;i; xc;iÞ is a quadrature weight and point location pair and Nc is the number of quadrature points. We note that the
accuracy of the quadrature to be used depends largely on the form of the integrands. In this work, we consider a technique
frequently used in spectral methods and in nodal DG methods [24,14,25,15] to evaluate these integrals. This technique relies
on the so-called nodal basis, another basis spanning VðKÞ, to construct a simple but efficient means in treating the nonlinear
terms. Here, let f/m 2 VðKÞgm¼1;...;Mp

with Mp P Np be a nodal basis associated with the interpolation points fxm 2 Kgm¼1;...;Mp
.

The nodal basis functions possess the so-called interpolation property, namely,
/mðxnÞ ¼ dm;n ¼
1; for m ¼ n;

0; for m – n:

�
ð8Þ
Here, we allow the number of nodal basis functions Mp to be greater than the number of trial basis functions Np. In the case
where Mp > Np, the property (8) of the nodal basis functions holds in an approximate sense only. With the nodal basis at
hand, the nonlinear flux term is approximated as an interpolant as follows
fxðuh; xÞ � ðIfxÞðxÞ �
XMp

m¼1

fx;m/mðxÞ ¼ /T f x; ð9Þ
where f x ¼ ffx;1; . . . ; fx;Mpg
T and / ¼ f/1; . . . ;/Mp

gT . The nodal representation of the y-directed flux ðIfyÞðxÞ is defined in an
analogous fashion. Here, the nodal coordinates are simply defined by fx;m ¼ fxðuhðxmÞÞ. By adopting the nodal representation
for the nonlinear flux term and the source term, the formula (6) becomes the following system of ODEs,
XNp

n¼1

Mm;n
deun

dt
�
XMp

n¼1

Sx;ðm;nÞfx;n þ Sy;ðm;nÞfy;n
� �

þ
Z
@K

bf h � ne/mds ¼
XMp

n¼1

fMm;nsn; m ¼ 1; . . . ;Np: ð10Þ
where sn ¼ sðuhðxnÞ; xn; tÞ, and the general element mass matrix and the general element stiffness matrices are
fM ¼ ðfMm;nÞ; fMm;n ¼
Z

K

e/m/ndx ð11Þ

Sx ¼ ðSx;ðm;nÞÞ; Sx;ðm;nÞ ¼
Z

K

@e/m

@x
/ndx ð12Þ

Sy ¼ ðSy;ðm;nÞÞ; Sy;ðm;nÞ ¼
Z

K

@e/m

@y
/ndx: ð13Þ
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Notice that, with these nodal representations, the volume integrals involving the nonlinear flux and the source term reduces
to matrix–vector multiplications. Note that the edge integrals can be treated in a similar fashion; see Appendix B. The ele-
ment matrices of each element can be computed exactly (or approximately) and stored at the initial stage of the simulation,
leading to a quadrature free approach [26]. This nodal-integration approach provides a simple means to evaluating the inte-
gral terms and offers a computational advantage in the sense that the number of operations required is proportional to the
number of nodes regardless of the form of the non-linear flux and source term. The disadvantage of this approach is that
there is an error introduced through the interpolation of the nonlinear flux and the source term. Such an error, known as
an alias error, may induce an instability for marginally resolved computations [24,25]. In this case, an instability can still
be effectively controlled by employing a de-aliasing strategy [24,25].

Since there is no functional-continuity requirement in the expansion coordinates belonging to different elements, a global
system of ODEs is composed simply of the system of ODEs (10) from all elements. To solve such a global system, we invert
the mass matrix (a matrix associated with the time-derivative term) and apply a time stepping scheme to the resulting ex-
plicit system of ODEs. Since the expansion coordinates from different elements enter (10) only through the numerical flux
term, the mass matrix is a block diagonal matrix with the element mass matrices as the diagonal block entries. The inverse of
the mass matrix can thus be easily computed by inverting each element mass matrix. Note that an inversion of the element
mass matrices can be done once and for all at the initial phase of the simulation. Note this procedure can be made trivial by
choosing the local basis fe/mg forming an orthogonal set since, in this case, the element mass matrix is a diagonal matrix.

The remaining tasks in defining a DG scheme concern choosing the finite dimensional approximation space, its associated
basis functions, a time discretization scheme, and a Riemann solver. The next two subsections describe two particular sets of
polynomial bases, namely the polymorphic nodal bases and the nodal bases, to be used in the framework described above.
Thereafter, we discuss in brief a time integration scheme employed in this study.

3.2. Polymorphic nodal elements: modal and nodal basis

Below, we summarize the construction of the so-called polymorphic nodal bases for a convex polygon devised by Gassner
et al. [15]. Such bases consist of an orthogonal polynomial basis to be used as a set of trial and test functions and its asso-
ciated nodal basis counterpart to be used in treating nonlinear terms.

For a given convex polygon K, we introduce a coordinate transformation nK : K ! K, connecting an element K with a so-
called reference element K, as follows
n ¼ nKðxÞ ¼
x� xc

DX
; x 2 K; ð14Þ
where n ¼ ðn;gÞ; x ¼ ðx; yÞ; xc denotes the centroid of K, and DX ¼ maxðxmax � xmin; ymax � yminÞ is a scaling factor (see Fig. 2).
The reference element K is the range of the coordinate transformation. Note that the transformation (14) amounts simply to
a rigid-body translation and linear scaling of the element K. Let fpmgm¼1;...;Np

be the monomial basis of PpðKÞ, the space of
polynomials with degree of at most p, namely
pmðnÞ ¼ nigj; i; j P 0; iþ j 6 p; ð15Þ

m ¼ 1
2
ðiþ jþ 1Þðiþ jþ 2Þ � i: ð16Þ
The number of basis functions Np and the order p are related through
Np ¼
ðpþ 1Þðpþ 2Þ

2
: ð17Þ
An orthonormal basis fe/mðnÞgm¼1;...;Np
is subsequently constructed by applying a modified Gram–Schmidt process [27] with

the usual L2 inner product to the monomial basis. Consequently, the basis functions e/mðnÞ possess the orthonormal property,
more precisely,
ξ

η

y

x

ξ (x)
K

−1

(x)ξ
K

ΔΧ Δξ=1

K

K

cX

Fig. 2. Schematic diagram of the coordinate transformation.
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Z
K

e/mðnÞe/nðnÞdn ¼ dm;n:
The basis functions on the physical element K can then be defined as follows
e/mðxÞ ¼ ðe/m � nKÞðxÞ; m ¼ 1; . . . ;Np: ð18Þ
Here, for notational simplicity, we use an identical notation for the basis functions on physical element K and on the refer-
ence element K. Since the transformation (14) is affine, the space spanned by fe/mðxÞg is therefore a space of polynomials
with degree of at most p. In addition, fe/mðxÞg forms an orthogonal basis over K owing to the geometric transformation
(14) having a constant Jacobian. For a given set of nodal points XIðpÞ ¼ fxmgm¼1;...;Mp

� K , a so-called nodal basis
f/mðxÞgm¼1;...;Mp

and it associated coordinate fumgm¼1;...;Mp
are constructed from considering the following conditions, for

uðxÞ 2 PpðKÞ,
/mðxnÞ ¼ dm;n; uðxÞ ¼
XNp

m¼1

eum
e/mðxÞ¼:

XMp

m¼1

um/mðxÞ: ð19Þ
As a result, the transformations between two representations are determined by
u ¼ Veu and e/ ¼ VT
/ ð20Þ
where u ¼ fu1; . . . ;uMpg
T
; eu ¼ feu1; . . . ; euNpg

T
;/ ¼ f/1; . . . ;/Mp

gT
; e/ ¼ fe/1; . . . ; e/Npg

T
and V is a generalized Vandermonde ma-

trix whose entries are given by
Vm;n ¼ e/nðxmÞ; m ¼ 1; . . . ;Mp; n ¼ 1; . . . ;Np: ð21Þ
The remaining task in defining the nodal basis involves choosing a nodal set. The distribution of the nodal points has a
crucial implication on the quality of an interpolant. It is known that a high quality interpolant, indicated by a small value
of the Lebesgue constant [28], can be achieved with node sets having nodal points clustered in the vicinity of the boundaries
of the element. Note that the Lebesgue constant indicates how far the interpolant may deviate from the best polynomial
approximation of the function. Here, we use the specific framework devised by Gassner et al. [15] to generate a nodal set
yielding such a desirable effect. Such a nodal set consists of a set of nodes on the element boundary and a set of nodes in
the interior. The interior nodes are generated by nesting a set of the scaled-down boundary nodes in a way that the nodes
are denser near the boundaries. More precisely, a nodal set on a given polygon of Ngon sides is constructed from the following
formula,
XIðpÞ ¼
[rmax

r¼0

MrðXS
I ðp� ðNgon � pdÞrÞÞ ð22Þ
with
rmax ¼ floor
p

Ngon � pd

� �
ð23Þ
and 0 6 pd < Ngon. Here, XS
I ðqÞ denotes a set of boundary nodes which has qþ 1 nodes with the Gauss–Lobatto node distri-

bution on each edge of the considered polygon and XS
I ð0Þ ¼ fxcg where xc is the centroid of the polygon. The mapping Mr

generates the interior nodes by scaling down, with a certain factor depending on the nesting step r, the boundary point set
XS

I . Note thatM0 is an identity mapping. See Gassner et al. [15] for a detailed account of the mappingMr . Fig. 3 shows, as an
example, a nodal set for p ¼ 5 on a quadrilateral, triangular, and pentagonal element. Note that the formula (22) is applicable
for an arbitrary p. It uses the parameter pd to adjust the number of interior nodes. See Fig. 3(a) and (b) for a comparison of the
node sets with different values pd. Note that including more interior points by increasing the value of pd improves the quality
of an interpolant [15], however, at the expense of computational efficiency in terms of the number of operations required. It
is noted that the number of nodes Mp; p, and pd are related thorough
Mp ¼ Ngonðrmax þ 1Þ p� 1
2
ðNgon � pdÞrmax

� �
þ d0;p�ðNgon�pdÞrmax : ð24Þ
Table 1 tabulates Np and Mp of the triangular and quadrilateral polymorphic elements with p ranging from 1 to 6.
The number of nodal points Mp from this construction is in general greater than Np (except for a triangular element where

Mp ¼ Np). For Mp – Np, an inverse of the Vandermonde matrix is not uniquely defined. To circumvent this issue, a pseudo-
inverse matrix defined in the least squares sense, more specifically,
V�1 � V�1VT ; V ¼ VT V ; ð25Þ
is utilized in defining the inverse transformations
eu ¼ V�1u and / ¼ ðV�1ÞT e/: ð26Þ



Fig. 3. Nodal distribution for p ¼ 5 (Np ¼ 21): (a) quadrilateral element with pd ¼ 0 (b) quadrilateral element with pd ¼ 1 (c) triangular element with pd ¼ 0,
and (d) pentagonal element pd ¼ 0.

Table 1
Degrees of freedom Np and the number of nodal points Mp per element of triangular and quadrilateral polymorphic elements.

Degree p Tri element Mp ¼ Np Quad element

Np Mp

pd ¼ 0 pd ¼ 1

1 3 3 4 4
2 6 6 8 8
3 10 10 12 13
4 15 15 17 20
5 21 21 24 28
6 28 28 32 37
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Note that for Mp > Np, the set f/mg defined as above, although it spans every polynomial in PpðKÞ, is not a basis since it is a
linearly dependent set. However, for simplicity, we still call such a set the nodal basis and its members, nodal basis functions.
As a consequence of using the pseudo-inverse Vandermonde matrix (25) in defining the nodal basis functions, the nodal ba-
sis function is close but not identical to unity at its associated node and is close but not identical to zero at the other nodes,
i.e., /mðxnÞ – dm;n. Therefore, a function value at the nodal points of the polynomial approximation of a function f ðxÞ defined
by
ðIpf ÞðxÞ ¼
XMp

m¼1

f ðxmÞ/mðxÞ ¼ /T f
is in general not identical to the value of the nodal coordinate, i.e., ðIpf ÞðxiÞ– f ðxiÞ. Note that, in practice, an explicit form of
the nodal basis functions is rarely required. Instead, interpolated values at given points are obtained by first calculating the
modal coordinates ef ¼ fef 1; . . . ; ef Npg

T
from the nodal coordinates f ¼ ff1; . . . ; fMpg

T by means of an inverse transformation and
subsequently calculating the interpolated values through the modal representation.

Note that the scheme based on the polymorphic nodal bases utilizes the modal basis functions as the trial and test func-
tions in the DG formulation. Owing to the orthogonality of the modal basis, the global mass matrix of this scheme is diagonal
which can be trivially inverted. The element matrices in the ODEs (10) can be easily realized with the use of the change-of-
bases transformations (20) and (26). More precisely, we evaluate the element general stiffness matrix by considering
Sx ¼ VTSx; where Sx �
Z

K

@/

@x
/T dx: ð27Þ
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The calculation of the general stiffness matrix amounts to determining a stiffness matrix Sx. We use a technique similar to
that devised by Hesthaven and Warburton [25] in evaluating such a stiffness matrix. This technique, which does not require
Gaussian integration, is given in Appendix A.

3.3. Nodal elements: nodal bases on triangles and quadrilaterals

The DG scheme based on the nodal bases uses a nodal basis not only as an efficient means for treating nonlinear flux
terms but also as trial and test functions in the DG formulation, in other words, in this scheme, e/mðxÞ corresponds simply
to /mðxÞ. Here, a nodal basis on triangles and tensor-product nodal basis on quadrilaterals are considered.

For triangular elements, although the nodal basis on triangles constructed as in the previous subsection represents an
excellent candidate, we consider a nodal basis with a set of interpolation points described in [14,29,25]. Unlike the nodal
basis described in the last subsection which is constructed in an element-by-element fashion, such a nodal basis is defined
in a more conventional way, i.e., through a set of nodal basis functions on a single master triangle. More precisely, the nodal
basis f/mðnÞ 2 PpðItÞgm¼1;...;Np

associated with a given nodal set fnm 2 Itgm¼1;...;Np
on the master element

It ¼ fn ¼ ðn;gÞ j n;g P �1 and nþ g 6 0g is first constructed using the approach described in the last subsection. Subse-
quently, nodal basis functions on the physical straight-edged triangular element K are defined as /mðxÞ ¼ ð/m � x�1

K ÞðxÞwhere
x�1

K is an inverse mapping of the affine mapping xK : It ! K:
xKðnÞ ¼
X3

i¼1

Lt;ixK
i ð28Þ
where xK
i denotes a coordinate of the ith-vertex of the element (the vertices are numbered in a counter clockwise manner)

and the functions Lt;i are defined by
Lt;1 ¼ �ðnþ gÞ=2; Lt;2 ¼ ðnþ gÞ=2; and Lt;3 ¼ ð1þ gÞ=2:
Defining the nodal basis in this way presents an advantage in that element matrices, i.e., mass and stiffness matrices, can be
simply obtained by appropriately scaling the element matrices associated with the master elements owing to the mapping
(28) having a constant Jacobian. Consequently, the amount of computer memory required and also computational costs in
evaluating the element matrices are lower than a scheme using the nodal basis constructed directly on the physical ele-
ments. It is noted that we use the near-optimal set of nodal points on the master element given by Hesthaven [29] and Hest-
haven and Warburton [25] (as an example, see Fig. 4(a) for such a nodal set with p ¼ 5). In comparison to the nodal set on a
triangle defined by (22), this near-optimal nodal set has a slightly lower value of the Lebesgue constant for the range of p
considered in this work (see [25,15] for the Lebesgue constant of theses sets).

For nodal quadrilateral elements, instead of working with Pp, the approximation space on the master element Iq ¼ ½�1;1	2

is selected as Q pðIqÞ ¼ Ppð½�1;1	Þ � Ppð½�1;1	Þ, the tensor products of Ppð½�1;1	Þ, a space of one-dimensional polynomials of
degree at most p. Let fPiðxÞgi¼0;...;p be the normalized Legendre polynomial basis on ½�1;1	, a two-dimensional orthonormal
basis on Iq can then be defined by
wðpþ1Þjþiþ1ðnÞ � PiðnÞPjðgÞ; 0 6 i; j 6 p: ð29Þ
The number of basis functions and the order p in this case is related through
Np ¼ ðpþ 1Þ2: ð30Þ
Note the higher number of degrees of freedom in comparison to elements of Pp-type for an given interpolation order p. A
nodal basis f/mgm¼1;...;Np

is then constructed in an identical way described in the last subsection, provided that a set of nodal
points fnm 2 Itgm¼1;...;Np

is given. Here, we consider the set of interpolation points with a Legendre–Gauss–Lobatto distribu-
tion, which is given by
nðpþ1Þjþiþ1 ¼ ðxi; xjÞ; 0 6 i; j 6 p; ð31Þ
(a) (b)

Fig. 4. Distribution of interpolation points on the master elements with p ¼ 5: (a) triangular element, and (b) rectangular element.
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where fxigi¼0;...;p are the zeros of the function ð1� xÞ2dðPp�1ðxÞÞ=dx (a nodal set with the classical two-dimensional Legendre–
Gauss distribution was also considered in [30]). Fig. 4 depicts the nodal set for p ¼ 5. The nodal basis functions on the phys-
ical (convex) quadrilateral element K are then defined as /mðxÞ ¼ ð/m � x�1

K ÞðxÞ with a bi-linear mapping xK : Iq ! K:
xK ¼
X4

i¼1

xK
i Lq;iðnÞ ð32Þ
where xK
i denotes a coordinate of the ith-vertex of K (the vertices are numbered in a counter clockwise manner) and
Lq;1 ¼ ð1� nÞð1� gÞ=4; Lq;2 ¼ ð1þ nÞð1� gÞ=4;
Lq;3 ¼ ð1þ nÞð1þ gÞ=4; and Lq;4 ¼ ð1� nÞð1þ gÞ=4:
Note that except for rectangular and four-sided parallelogram elements, the Jacobian of the mapping (32) is not a constant;
as a consequence, the element matrices (i.e., element mass and stiffness matrices) of each element can no longer be obtained
by scaling the element matrices associated with the master element. While they can be computed accurately and subse-
quently stored element-by-element, we adopt a less accurate but more memory-economical approach in approximating
such matrices [30]. Such an approach, owing to the use of a (fixed order) classical two-dimensional Gauss quadrature, defines
the approximate element matrices as a multiplication of the precomputed matrices defined on the master element and the
precomputed matrices involved with the coordinate mapping. The coordinate-mapping matrices, which vary element-by-
element, are diagonal and thus require less storage.

3.4. Temporal discretization

The system of ODEs governing the time evolution of the discrete solution for all elements can be written as
M
deuh

dt
¼ rðeuh; tÞ ð33Þ
where M represents the global mass matrix, euh denotes the global vector of the expansion coordinates (modal coordinates
for the schemes based on polymorphic bases and nodal coordinates for nodal bases), and rðeuh; tÞ denotes the right-hand-side
vector arising from the terms that are not associated with the time derivative.

The time-dependent system (33) is numerically integrated using an explicit fourth–fifth order Runge–Kutta–Fehlberg
(RKF45) method (see e.g., [31,32] for a detailed account of this scheme). RKF45 has a mechanism to automatically select
the step size Dt used in the integration to control accuracy of the solution. Concisely, the integrator utilizes the fourth-order
and fifth-order Runge–Kutta scheme that uses all values of substages of the fourth-order scheme. It accepts the solution from
the fifth order subscheme and adjusts the step size to control the truncation error of the fourth order subscheme. Here, we
use the RKF45 subroutine written by Shampine et al. [33]. This subroutine requires an external subroutine returning the
right-hand-side vector of the ODEs. We summarize in Appendix B a brief outline of steps used in an implementation of
the calculation of the right-hand-side vector M�1r. Note that, in the RKF45, the temporal accuracy of the solution is con-
trolled by the parameters relerr and abserr, denoted here as er and ea (er > ea). Since we focus on assessing the accuracy
of the spatial discretization, the values of these parameters are set to sufficiently small values in order to keep temporal dis-
cretization errors negligible when compared with spatial errors.
4. Numerical experiments

The numerical performance of the nodal DG (NDG) method and the polymorphic nodal DG (PNDG) method (i.e., the hy-
brid modal/nodal DG method) are assessed by evaluating their accuracy, computing times, and computational cost per accu-
racy. To facilitate the investigation, we consider a nonlinear problem with a smooth manufactured solution as well as the
nonlinear Stommel problem as test problems. The manufactured-solution problem has an a priori defined exact solution
and thus allows for an accurate measure of error. We therefore use this problem in our comprehensive assessment. The per-
formance study is carried out by systematically varying the interpolation order p of the DG schemes and the element size h of
the computational mesh.

In the study, we mainly use the broken L2 norm
kf ðxÞkXh
¼

X
K2T h

Z
K

f ðxÞ2dx

 !1=2

ð34Þ
in measuring the error in the approximate solution. Computing times reported below are an average of at least two identical
simulations. It is important to note that the computing times closely relate to the implementation details. The main com-
puting cost involves evaluations of the right-hand-side of the ODEs (33). The computing times reported here correspond
to the results from using an implementation outlined briefly in Appendix B for the evaluation of the right-hand-side term.
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4.1. Numerical flux

In this study, we use the local Lax–Friedrichs (LLF) flux as a numerical flux in the DG discretization. To define this flux,
consider two adjacent elements K� and Kþ and let e be their common edge (which is not necessarily the entire edge of
an element). The LLF flux is defined as follows, for x 2 e
bF ¼ Fðq�h Þ þ Fðqþh Þ
2

þ C
2

n
ðq
h � q�h Þ ð35Þ
where q�h and qþh are respectively the solution value at x of the element K� and Kþ;n� ¼ �nþ, and the constant C corresponds
to the largest value, along the edge e, of the absolute maximum eigenvalue of the normal flux Jacobian matrix,
max
s2½q�

h
;qþ

h
	
k nx

@f
@q

����
s

þ ny
@g
@q

����
s

� ����� ���� ¼ max
s2½qþ

h
;q�

h
	
jn � uj þ

ffiffiffiffiffiffi
gH

p��� ���
 ����
s

h i
ð36Þ
where kð�Þ denotes the eigenvalue of the matrix. Note that the boundary conditions are enforced weakly by properly spec-
ifying an exterior state in the numerical flux along the physical boundaries such that the desirable conditions are obtained in
a weak sense.

4.2. Manufactured solutions

Here, a problem with an exact solution is used as a verification tool for assessing the DG schemes. Specifically, we con-
sider the problem in which the vector of source terms sðq; x; tÞ corresponds to a vector of terms arising from substituting the
a priori defined smooth functions below
H ¼ 2n0
cosðrðx� x1ÞÞ cosðrðy� y1ÞÞ

cosðrðx2 � x1ÞÞ cosðrðy2 � y1ÞÞ
cosðxðt þ sÞÞ þ H0

uH ¼ t0
sinðrðx� x1ÞÞ cosðrðy� y1ÞÞ

cosðrðx2 � x1ÞÞ cosðrðy2 � y1ÞÞ
sinðxðt þ sÞÞ

vH ¼ t0
cosðrðx� x1ÞÞ sinðrðy� y1ÞÞ

cosðrðx2 � x1ÞÞ cosðrðy2 � y1ÞÞ
sinðxðt þ sÞÞ

ð37Þ
into the left hand side of (1). In (37), r;x; s; x1; x2; y1; y2; n0; t0 and H0 are positive constants. The value of H0 is selected suf-
ficiently large so that H is positive everywhere. The exact solution is used to prescribe the initial condition and the boundary
conditions. Note that when the value of r is identical to that of x and the value of n0 is identical to that of t0, this manu-
factured solution leads to a vanishing forcing term for the depth-averaged continuity equation. In all numerical calculations
reported below, the values of the parameters appearing in (37) are set to r ¼ 0:0001405 rad/m, x ¼ 0:0001405 rad/s,
s ¼ 3456 s, x1 ¼ 40� 103 m, x2 ¼ 150� 103 m, y1 ¼ 10� 103 m, y2 ¼ 55� 103 m, n0 ¼ 0:25 m, v0 ¼ 0:25 m2/s and
H0 ¼ 2 m. The simulations are performed in the rectangular computational domain of ½x1; x2	 � ½y1; y2	. The integration is car-
ried out until tf ¼ 172800 s (a period of the solution is approximately 44,720 s).

Below, we first present numerical results computed on so-called regular meshes and subsequently results computed on
unstructured meshes. We consider the DG schemes with p ranging from 1 to 5. Note that, in the PNDG scheme, we employ
quadrilateral elements with pd ¼ 1 for p ¼ 1 and 2 and with pd ¼ 2 for p ¼ 3 to 5; for triangular elements, we use pd ¼ 0
regardless of the order p. This choice of pd stems directly from the aspect concerning accuracy and computational operations
of the polymorphic bases. The values of the parameters controlling temporal error ðer ; eaÞ in the RKF45 are set to
ð5� 10�7;5� 10�9Þ.

4.2.1. Solution computed on regular meshes
We first consider three so-called regular mesh configurations, namely, a regular triangular mesh, a rectangular mesh, and

a skewed-rectangular mesh. The last configuration refers to a mesh with convex quadrilaterals. In each configuration, four
nested meshes are employed in order to examine the h convergence property. In all configurations, the meshes, from the
coarsest to the finest resolution, are denoted as h;h=2; h=4, and h=8, respectively. Fig. 5 shows the coarsest mesh of each con-
figuration, which is built based on a uniform grid of 25� 11 points. For the skewed-rectangular mesh configuration, the
coarsest mesh is obtained by relocating interior points of the uniform grid. Each interior point is relocated in either direction
from its original location with a distance varying randomly from 0 to 25% of the grid spacing. Note that the coarsest trian-
gular mesh consists of 480 elements and the coarsest quadrilateral meshes consist of 240 elements. The three finer meshes
are obtained by applying successive uniform refinements to the coarsest mesh. The refinement divides each triangle into
four similar sub-triangles and uniformly divides each rectangle into four sub-rectangles (i.e., the number of elements in-
creases four times in each refinement step). Note also that for the same resolution, the number of elements in the rectangular
mesh is half that of the triangular mesh.

4.2.1.1. Accuracy. As an example, we plot in Fig. 6(a), without smoothing, the approximate total water column height at the
final simulation time tf ¼ 172800 from the PNDG scheme with p ¼ 3 and pd ¼ 1 on the rectangular mesh of h-resolution (the



Fig. 5. Coarsest regular mesh used in the SWE with a manufactured solution; (a) triangular mesh, (b) rectangular mesh, and (c) Skew-rectangular
(quadrilateral) mesh.

D. Wirasaet et al. / Comput. Methods Appl. Mech. Engrg. 270 (2014) 113–149 123
triangles shown there are drawn for plotting purpose so that the solution at the interior nodes can be visualized). Note the
qualitative agreement with the exact solution depicted in Fig. 6(b). Table 2 tabulates the accuracy in the approximate total
water column height Hh through the normalized L2 errors, jXj�1=2kH � HhkXh

. In this table, data from DG schemes is grouped
according to an interpolation order p employed. Within each data group, we list and highlight the error of the scheme that
yields the most accurate overall solution; for ease of comparison, we tabulate the errors of the other schemes as the ratio of
the error of a specific scheme relative to the error of the most accurate scheme (for instance, for p ¼ 3 and h=2-meshes, the
error from the NDG scheme on the triangular mesh is 3.26 times the error from the NDG scheme on the rectangular mesh,
more precisely, 3:26� ð1:03� 10�6Þ). Note that the higher the error ratio, the less accurate the solution in comparison to that
of the scheme highlighted.

Evidently, the error levels in the approximate solution become smaller either as the order of basis functions p increases or
as the element size decreases. It can be observed that, overall, for the same order p and similar mesh resolution, the approx-
imate solution Hh ordering from greater to lesser accuracy corresponds to the following schemes: NDG on rectangles, NDG
on skewed rectangles, NDG and PNDG on triangles, PNDG on rectangles, and PNDG on skewed rectangles. The error ratios of
less accurate schemes to the most accurate scheme are higher as p increases, for example, the error ratio of the PNDG solu-
tion on rectangle meshes to the NDG solution on rectangles increases from approximately 1.1 times for p ¼ 1 to roughly 24
times for p ¼ 5. Note that, for triangular meshes, the PNDG and NDG schemes yield solutions with virtually indistinguishable
error levels. This can be expected since both schemes use the Pp-type bases for triangular elements. It is evident that, on the
rectangular mesh, the NDG scheme yields a more accurate solution than the PNDG scheme. The same can be said for the
solutions from the NDG and PNDG schemes on the skewed-rectangular mesh. We believe that such a gain in accuracy is
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Fig. 6. Manufactured-solution test problem: total water column at t ¼ 2 day; (a) Hh obtained from the PNDG scheme with p ¼ 3 and pd ¼ 1 on the
rectangular h-mesh; (b) manufactured exact solution.
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attributed mainly to the tensor-product bases employed in the NDG scheme on rectangles being able to span additional cross
polynomial terms not belonging to the span of polynomial bases employed in the PNDG scheme. Furthermore, at the same
mesh resolution, the NDG scheme on rectangles yields lower error levels in Hh than the schemes on triangles even though a
rectangular element used has an area that is twice that of a triangular element (however, both elements have similar edge
lengths). This demonstrates to some extent the benefit of the tensor product bases in terms of accuracy. It can be noticed
that, the use of skewed-rectangular elements, as expected, degrades the accuracy in Hh when compared to the use of rect-
angular elements. This suggests that the milder the size transition of the skewed rectangles, the more accurate the tensor-
product basis solutions. Note that the NDG scheme on skewed rectangles still produces more accurate solutions than the
schemes on triangles.

The numerical order of convergence, which refers to the exponent value s from fitting chs with c being constant to the
error norm jXj�1=2kH � HhkXh

, is reported in the last column of Table 2. We note that all the DG schemes, regardless of bases
or element shape, exhibit a convergence rate of approximately Oðhpþ1Þ for the total water column height (note that each
scheme has a different value for the constant c). Note that the degradation in the order of convergence for most schemes
with p ¼ 5 and the h=8 meshes is due to the fact that the temporal errors from the RKF45 integrator, with the specific error
tolerance employed, are no longer negligible in comparison to the spatial errors. Note that the observed convergence rate is
higher than that of the theoretical estimate Oðhpþ1=2Þ expected for a Lax–Friedrichs DG solution to a problem with nonlinear
fluxes [34]. To examine the p-convergence properties, the error levels obtained for each mesh resolution are plotted against
the order p used on the semi-log scale (error levels on a log scale and p on a linear scale). Fig. 7 shows examples of such plots
for the h- and h=2-meshes. The curves for all DG schemes appear approximately as straight lines, indicating that all DG
schemes considered exhibit the expected exponential convergence rate with respect to p. Although not reported here in



Table 2
Normalized L2 errors in Hh; EH � jXj�1=2kH � HhkXh

, of the overall most accurate scheme for a given order p and error ratios (specific scheme relative to the most
accurate scheme for that p), as computed on regular meshes, and rate of h-convergence. A code [ppmn] denotes the DG method preceding it.
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detail, we note that the convergence rates of uH and vH are between OðhpÞ and Oðhpþ1Þ. The convergence of the schemes on
rectangles and triangles appear to behave somewhat irregularly; the convergence rates of these schemes are typically close
to the expected rate Oðhpþ1=2Þ for even p and close to Oðhpþ1Þ for odd p. This somewhat irregular behavior appears less pro-
nounced in the schemes on skewed rectangles with the numerical order of convergence being typically close to pþ 1 for both
odd and even p.
4.2.1.2. Computing times. Table 3 tabulates computing times (in seconds), denoted as Tc , required in the simulations. Note
that data reported are an average of three identical simulations (except for the schemes with p ¼ 5 and h=8-mesh combina-
tion where they are the results from two runs). In this table, data is grouped according to the interpolation order p used.
Within each data group, the computing times of the scheme using the least computing time are listed and highlighted;
the computing times of the other schemes are tabulated as the ratio of the computing time of a specific scheme relative
to the computing time of the fastest scheme. In every scheme, while holding the mesh resolution unchanged, the computing
time required increases as the interpolation order p of the scheme increases. Such increases in computing times stem pri-
marily from the following two reasons. First, the degrees of freedom per element increase as p increases. Second, the time
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at t ¼ 2 days as a function of order of bases p. (a) h-meshes; (b) h=2-meshes.
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step size Dt used is smaller as p increases in order to keep the temporal accuracy sufficiently small and, as an explicit time
scheme is used, to maintain numerical stability. This aspect is implicitly reflected by numerical data listed in Table 4 which
shows an increase in N RHS (i.e., decrease in Dt) as p increases. Note that N RHS denotes the total number of calls made within
the RKF45 integrator to a subroutine calculating the right hand side of the ODEs (33). Likewise, while fixing p, the computing
times required increases as the mesh is refined. The increasing computing time is the direct consequence of an increase in
the number of elements (hence the total DOFs). Furthermore, as the mesh size decreases, the time step size Dt used is smaller
in order to maintain temporal accuracy and to ensure stability; this aspect can be discerned in an increasing N RHS as the ele-
ment size decreases (see Table 4).

It can be observed from Table 3 that, in the calculations based on quadrilateral elements, the PNDG scheme requires
less computing time (approximately between 1.4 and 2.4 times) than the NDG scheme. This behavior is to be expected
since, on quadrilateral elements, the DOFs per element of the PNDG scheme are less than that of the NDG scheme for
all p. Furthermore, it can be noticed in Table 4 that, in the quadrilateral-element calculations, N RHS required in the PNDG
scheme are also fewer than that of the NDG scheme; this results in an additional reduction in computing time for the
PNDG scheme in comparison to the NDG scheme. Table 3 shows that the PNDG scheme on quadrilaterals is faster than
the PNDG scheme and NDG scheme on triangles. This is an expected behavior and stems directly from the fact that the
total number of nodes in the PNDG scheme on quadrilaterals is noticeably (approximately 35%) lesser than that of the
PNDG and NDG schemes on triangles. It can be noticed from Table 3 that the PNDG scheme on triangular is faster than
the NDG scheme on triangles. We note that this lower computing in the PNDG scheme is a result of the RKF45 time inte-
grator automatically selecting larger time step sizes Dt for the PNDG scheme (this reflects in a fewer calls to the subroutine
evaluating the RHS vector–see Table 4). The NDG scheme on quadrilaterals, due to the use of tensor product bases, has
higher DOFs per element than that of the PNDG and NDG scheme on triangles, more precisely, 2� 2=ðpþ 2Þ times higher
DOFs per element. The cost per element in evaluating one volume integral in the NDG scheme on quadrilaterals is approx-
imately 4� 4ð2pþ 3Þ=ðpþ 2Þ2 times higher than the NDG and PNDG scheme on triangles. Hence, it can be expected that
the reduction of the number of elements associated with the rectangular mesh might offset the higher cost of using tensor-
product bases only up to a certain interpolation order p. A crude estimate made in the previous work [30] shows that the
cost of evaluating the RHS vector in the NDG scheme on quadrilaterals is expected to be greater than that of the NDG or
PNDG scheme on triangles for p > 1. Although not shown here in detail, we note that the value p at which the cost of eval-
uating RHS vector in the NDG scheme on quadrilaterals becomes more expensive is noticeably higher than the estimate.
We speculate that the efficiency of memory traffic and cache management are partial reasons explaining why this occurs
at p higher than the estimate. In terms of wall clock time, Table 4 shows that the NDG scheme on quadrilateral becomes
slower than the PNDG scheme on triangles when p > 4; the NDG scheme on quadrilateral is faster the NDG on triangles for
all p considered here (p ¼ 1 to 5).

It can be verified from data in Table 3 that, for a fixed interpolation order p and varying h, the computing time Tc behaves
approximately like chs, where c and s are constant, in other words
Tc � OðhsÞ: ð38Þ
The numerical rates s are tabulated in the last column of Table 3. Notice that the differences between the rate s are
relatively small (the value of s ranges from �2.7 to �2.8.) and the rates appear to be independent of the interpolation
order p. The values of the constant c, as expected, vary for the different DG schemes as well as the interpolation
order p.



Table 3
Computing times Tc (in seconds) of the overall fastest DG scheme for a given order p and time ratios (specific scheme relative to the fastest scheme for that p),
as computed on regular meshes. A code [ppmn] denotes the DG method preceding it. s denotes the rate of computing times as function of h, i.e., Tc � OðhsÞ.
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4.2.1.3. Computational cost per accuracy. The critical question when comparing numerical techniques is the computational
cost for a specific level of accuracy, or conversely, an error level to be achieved for a given computational cost. Figs. 8 shows
on a log–log scale the accuracy of Hh through normalized L2 errors versus the computing time. In this figure each curve rep-
resents the data computed on the four refined meshes with the interpolation order p being held constant. Figure legends
indicate the combination of DG basis, mesh configuration, and interpolation order p from which the data are obtained. In
each figure, we plot the data from the PNDG scheme on triangles for inter-comparison purposes. It can be observed that
all the curves appear approximately as straight lines on a log–log scale. Therefore, the computational time as a function
of accuracy in the total water column height Hh can be approximated by
Tc � c2ðEHÞs2 ð39Þ
where c2 and s2 are respectively the constant and the rate of the cost function. The discussions above on accuracy and com-
puting times implies that
s2 �
2:7

�ðpþ 1Þ : ð40Þ



Table 4
The number of calls to a subroutine computing RHS vector required in RKF45/PNDG and RKF45/NDG methods on regular meshes.

p h h=2 h=4 h=8 h h=2 h=4 h=8

PNDG tri NDG tri
1 15,853 25,117 39,325 61,759 19,144 30,079 47,743 76,507
2 21,565 34,807 54,193 84,075 30,475 48,547 75,679 118,123
3 27,067 42,457 66,109 104,439 39,733 61,609 95,995 156,349
4 32,053 50,293 78,765 130,015 53,581 84,673 132,133 207,202
5 36,823 57,937 93,001 171,510 62,455 96,691 151,249 248,853

PNDG quad NDG quad
1 11,431 17,611 28,477 45,667 13,665 22,708 36,832 57,985
2 17,191 27,601 42,967 66,769 25,739 39,614 60,774 93,475
3 22,405 34,927 54,367 84,859 36,515 55,881 85,801 132,615
4 26,875 42,043 65,677 103,247 47,704 73,195 112,633 175,368
5 31,255 48,997 76,807 122,707 59,581 91,519 141,325 221,995

(a) PNDG quad (b) NDG quad

10
2

10
3

10
4

10
5

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wall Clock Times (s)

L
2 E

rr
or

PNDG Quad, p = 1
PNDG Quad, p = 2
PNDG Quad, p = 3
PNDG Quad, p = 4
PNDG Quad, p = 5

10
2

10
3

10
4

10
5

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wall Clock Times (s)

L
2 E

rr
or

NDG Quad, p = 1
NDG Quad, p = 2
NDG Quad, p = 3
NDG Quad, p = 4
NDG Quad, p = 5

(c) NDG tri (d) NDG skewed-quad

10
2

10
3

10
4

10
5

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wall Clock Times (s)

L
2 E

rr
or

NDG Tri, p = 1
NDG Tri, p = 2
NDG Tri, p = 3
NDG Tri, p = 4
NDG Tri, p = 5

10
2

10
3

10
4

10
5

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wall Clock Times (s)

L
2 E

rr
or

NDG skewed−quad, p = 1
NDG skewed−quad, p = 2
NDG skewed−quad, p = 3
NDG skewed−quad, p = 4
NDG skewed−quad, p = 5

Fig. 8. Normalized errors jXj�1=2kH � HhkX at tf ¼ 172800 vs. computing times in seconds of DG solutions on regular grids. Solid lines represent the data of
(a) PNDG on rectangles, (b) NDG on rectangles, (c) NDG on triangles, and (d) NDG on skewed-rectangles. Dashed lines in (a–d) represent the data of PNDG
on triangles: �r� p ¼ 1;� � � p ¼ 2;��� p ¼ 3;�O� p ¼ 4, and �M� p ¼ 5.
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The constant pairs ðc2; s2Þ for the cost functions associated with the DG schemes considered are tabulated in Table 5.
It can be noticed from Figs. 8 that, for a given level of accuracy, the wall clock time decreases substantially as p increases.

To gain more insight into the effect of p on a cost per accuracy viewpoint, we evaluate the computing time for a specified
level of error e from the derived cost functions, i.e., finding Tc by using (39) with Eh ¼ e. Table 6 tabulates the computing
times required in each DG scheme with various orders p to yield a numerical solution with the specified levels of error e.
The value inside the parenthesis denotes the cost ratio of the computational cost for the identical error level using p� 1
to that using p order interpolants. Note that such a value indicates a reduction in cost when raising the interpolation order



Table 5
Constant and rate ðc2; s2Þ in the cost functions Tc ¼ c2ðEHÞs2 of DG schemes on regular grids.

DG bases and mesh Cost coefficients ðc2; s2Þ

p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5

NDG tri (1.49,�1.37) (1.07,�0.89) (1.40,�0.68) (2.27,�0.54) (4.01,�0.44)
PNDG tri (1.14,�1.40) (0.65,�0.91) (0.82,�0.70) (1.15,�0.56) (2.15,�0.45)
PNDG skewed-quad (0.58,�1.39) (0.69,�0.90) (0.81,�0.70) (1.08,�0.57) (2.25,�0.47)
PNDG quad (0.47,�1.40) (0.51,�0.91) (0.72,�0.69) (1.16,�0.55) (2.10,�0.45)
NDG skewed-quad (0.68,�1.39) (0.46,�0.89) (0.63,�0.68) (0.91,�0.55) (1.93,�0.45)
NDG quad (0.51,�1.41) (0.33,�0.89) (0.50,�0.67) (0.76,�0.54) (1.25,�0.45)

Table 6
Computing time, Te

c (in seconds) for a given level of error e in Hh of various DG solutions on regular grids. Numeric values in the parenthesis are the ratio
between Te

c of a DG scheme order p� 1 and that of p.

DG bases and mesh p Projected computing time Te
c

e = 5.0e�03 e = 1.0e�04 e = 1.0e�06 e = 1.0e�08

PNDG tri 1 1898 452,923 2.85e+08 1.80e+11
2 82(23.1) 2934(154.4) 197228(1446.1) 1.33e+07(13546.9)
3 33(2.5) 512(5.7) 12757(15.5) 317901(41.7)
4 22(1.5) 200(2.6) 2629(4.9) 34605(9.2)
5 24(0.9) 140(1.4) 1133(2.3) 9154(3.8)

NDG tri 1 2173 470,487 2.64e+08 1.48e+11
2 121(18.0) 3950(119.1) 239892(1101.1) 1.46e+07(10177.3)
3 51(2.3) 736(5.4) 16901(14.2) 387849(37.6)
4 41(1.3) 344(2.1) 4230(4.0) 52042(7.5)
5 42(1.0) 235(1.5) 1799(2.4) 13768(3.8)

PNDG skewed-quad 1 924 213,139 1.29e+08 7.80e+10
2 82(11.3) 2796(76.2) 178196(723.4) 1.14e+07(6863.8)
3 33(2.4) 521(5.4) 13178(13.5) 333343(34.1)
4 22(1.5) 211(2.5) 2953(4.5) 41296(8.1)
5 27(0.8) 168(1.3) 1455(2.0) 12580(3.3)

PNDG quad 1 777 185,355 1.17e+08 7.35e+10
2 64(12.2) 2241(82.7) 148117(787.7) 9789892(7502.1)
3 28(2.3) 426(5.3) 10367(14.3) 252525(38.8)
4 21(1.3) 178(2.4) 2207(4.7) 27334(9.2)
5 23(0.9) 133(1.3) 1053(2.1) 8361(3.3)

NDG skewed-quad 1 1048 236797 1.39e+08 8.25e+10
2 51(20.5) 1667(142.1) 100492(1390.9) 6059758(13615.6)
3 23(2.2) 330(5.0) 7576(13.3) 173840(34.9)
4 17(1.4) 149(2.2) 1895(4.0) 24177(7.2)
5 21(0.8) 117(1.3) 915(2.1) 7129(3.4)

NDG quad 1 886 217,372 1.41e+08 9.20e+10
2 37(23.8) 1227(177.1) 75121(1882.6) 4598333(20009.8)
3 18(2.1) 247(5.0) 5487(13.7) 121693(37.8)
4 13(1.3) 111(2.2) 1336(4.1) 16131(7.5)
5 13(1.0) 78(1.4) 612(2.2) 4830(3.3)
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from p� 1 to p (for example, with e ¼ 1:0� 10�4, the cost required in the NDG scheme on triangular elements reduces
approximately 120 times when raising p from 1 to 2). Results shown in this table clearly indicate the appeal of using higher
order schemes from the perspective of cost per accuracy. As an example, suppose that an accuracy of 10�6 is required, the use
of schemes with p ¼ 1 would require approximately on the order of 3 years of computing time, a prohibitively impractical
cost (this corresponds to an expected cost on the serial machine; a dramatically lower wall clock time can be achieved by
utilizing a parallel implementation). By using schemes with p ¼ 2, the computing times required are approximately on
the order of 1 to 2 days. Note that computing time decreases approximately three orders of magnitude. The schemes with
p ¼ 3 requires approximately on the order of 1 to 2 h of computing time. Note the cost reduces roughly four orders of mag-
nitude compared to the schemes with p ¼ 1 and approximately an order magnitude compared to the schemes with p ¼ 2.
The computing times required reduce further as the interpolation order p increases. It is evident from Table 6 that the smal-
ler the specified error level e, the more pronounced the gain in computational cost per accuracy achieved by raising the inter-
polation order p of the scheme. Although the computational cost for a given level of accuracy reduces as the interpolation
order p increases, the benefit diminishes as indicated by the reduction in the cost ratios inside parentheses shown in Table 6.
Arguably, although the scheme with p ¼ 2 shows the highest gain in terms of the cost reduction in comparison to the scheme



Table 7
Manufactured-solution problem on regular grids: computing time Tp;e

c for a specified level of error e in Hh of the PNDG triangular solution for a given p and time
ratios (given schemes relative to the PNDG scheme on triangles for that p). A code [mn] denotes the DG scheme preceding it.
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with p� 1, using the schemes with p ¼ 3 appears to be an appealing choice due to an evident significant performance gain
over using p ¼ 1 while showing moderate gains when compared to the schemes with p ¼ 2.

Table 7 shows the effect of the different combinations of DG bases and mesh configurations on the cost per accuracy per-
formance. In this table, the corresponding computing cost for the given levels of accuracy of the PNDG scheme on triangles
are highlighted. The computing costs of other combinations of DG bases and mesh configurations are reported as a ratio of
the computing time for the specific scheme to the computing time for the PNDG scheme on triangles for the same interpo-
lation order p (the higher the ratio, the higher the computational cost required to achieve a specified level of accuracy in
comparison to that of the PNDG scheme on triangles). It can be seen from this table that the NDG scheme on rectangles
exhibits the highest cost per accuracy performance among the combination of bases and mesh configurations considered.
We note the performance gain achieved with nodal quadrilateral elements is not as pronounced in comparison to the gain
realized using the high order schemes.

The numerical results discussed above and in the previous sections demonstrate the appeal of the use of tensor product
bases on quadrilaterals, from both accuracy and cost per accuracy perspectives. Note that nodal tensor-product basis can
represent more cross polynomial terms than the bases on triangles; thus it can be expected in general that, for a problem
with a smooth solution, the approximate solution from the nodal tensor-product elements would have higher or approxi-
mately the same level of accuracy as those from the bases on triangles. This expectation together with the presented numer-
ical results leads us to believe that the use of methods with nodal tensor-product bases is particularly appealing for the low
to moderate interpolation order p since higher efficiency in terms of cost per accuracy is likely be achieved. Note also that
although they may not be particularly appealing in terms of cost per accuracy, the schemes based on the polymorphic bases
on quadrilaterals show superiority in terms of the computing times required to reach the final solution. This makes such the
scheme appealing in a scenario where the computational time available is limited.

We have also examined a similar performance analysis based on the L1 error. Although not reported in detail here, we
note that the results exhibit similar behavior to that based on the L2 error described above.

4.2.2. Solution computed on unstructured meshes
Next we consider DG solutions on unstructured meshes with various elements and configurations, namely, an unstruc-

tured triangular mesh, a quadrilateral mesh, a mixed triangular-quadrilateral mesh, and a polygonal mesh. In each config-
urations, we employ meshes of varying levels of resolution. They are denoted, from the coarsest to finest, h;h=2;h=4, and h=8,
respectively. Fig. 9 shows the h-mesh for each configuration. The triangular h-mesh consists of 792 triangular elements with
the element edges of length at most equal to 4500. The finer triangular meshes are obtained by applying successive regular
refinements; see Table 8(a) for the number of triangles in each triangular mesh. We obtain other mesh configurations from
the triangular meshes. The mixed triangular-quadrilateral mesh is built naively by simply merging pairs of two adjacent tri-
angles in the triangular mesh into quadrilaterals. The merging process is conducted in such a way that every resulting quad-
rilateral element has a determinate Jacobian. In other words, we do not merge two triangles forming a quadrilateral with
interior angles equal to or greater than 180

�
. As is seen in Fig. 9(b), the resulting mixed meshes contain triangular elements

scattered over the computational domain. Table 8(b) lists the number of triangular and quadrilateral elements in each mixed
mesh. For the polygonal mesh, an element is formed by first collecting a set of all triangles sharing a vertex and subsequently
connecting a line between the centroids of any two elements in such a set having a common edge. In this way, the number of
sides of the resulting polygon corresponds to the number of triangles sharing the vertex. The total number of polygons in the
resulting mesh therefore equals the total number of vertices in the given triangular mesh. Note that any triangulation of a
given set of n points yields 2n� 2� k triangles [35] where k is the number of points lying on the boundary of the convex hull
of the considered set. Therefore, for a triangular mesh with the number of vertices in the interior far greater than the number
lying on the boundary, the number of elements in the resulting polygonal mesh would be fewer than that in the considered
triangular mesh. Table 8(c) tabulates the number of elements classified by shapes in each resulting polygonal mesh. For the



(a) Triangular mesh, Nel = 792

(b) Mixed triangular-quadrilateral mesh, Nel = 457

(c) Polygonal mesh, Nel = 433

(d) quadrilateral mesh, Nel = 594

Fig. 9. Unstructured h-meshes employed in DG solution to the SWE with a manufactured solution; (a) triangular mesh, (b) quadrilateral mesh, (c) mixed
triangular-quadrilateral mesh, and (d) polygonal mesh.
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same so-called resolution, the total number of elements in the polygonal mesh is less than that of its associated triangular
mesh. A quadrilateral mesh is built from a given triangular mesh by using an approach employed in [36], more precisely, by
placing a point at the centroid of each triangle and forming quadrilateral elements by connecting this point to the mid points
of the element edge. This strategy divides each triangle into three quadrilaterals. The mesh-size resolution of the derived
quadrilateral mesh is comparable to that of a triangular mesh resulting from applying regular refinement to the given trian-



Table 8
Number of elements categorized by shapes in computational meshes; (a) triangular meshes, (b) mixed triangular-quadrilateral meshes,
and (c) polygonal meshes.

Mesh res. Tri

(a) Triangular meshes
h 792
h=2 3168
h=4 12,672
h=8 50,688

(b) Mixed tri/quad meshes
Mesh res. Tri Quad Total
h 122 335 457
h=2 354 1407 1761
h=4 870 5901 6771
h=8 1902 24,393 26,295

(c) Polygonal meshes
Mesh res. Quad Pentagon Hexagon Heptagon Octagon Total
h 2 88 327 14 2 433
h=2 2 160 1479 14 2 1657
h=4 2 304 6159 14 2 6481
h=8 2 592 25,023 14 2 25,633
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gular element. The quadrilateral mesh at the so-called h=2j-resolution is hence defined from the h=2j�1-triangular mesh. Note
that, at the same mesh resolution, the number of elements in the quadrilateral mesh is 3/4 of that in the triangular mesh.

In the numerical calculations, the parameters in the RKF45 time integrator are set to er ¼ 1� 10�6 and ea ¼ 1� 10�9. The
integration is carried out until reaching tf ¼ 97200. For the PNDG scheme, the polymorphic bases with pd ¼ 1 are utilized for
quadrilateral elements. For polygonal meshes, we consider a strategy, employed by Gassner et al. [15] to solve the compress-
ible Navier–Stokes equations, in defining a set of nodal points for the polymorphic bases. This strategy uses (22) with rmax

(instead of pd) as a free parameter in defining the nodal set of the elements whose the nodal sets obtained using pd ¼ 1 con-
tain less than or equal to a single nodal point in the interior. More specifically, for such elements, their associated nodal sets
are defined as those obtained by adjusting the parameter pd in (23) so that rmax ¼ 1 and in addition p� ðNgon � pdÞ > 0 for
p P 3. This strategy ensures the existence of interior nodes for all elements. We find that this strategy yields noticeably more
accurate approximate solutions than the strategy using the fixed value pd ¼ 1 (at least two times more accurate in the L2-
norm for p P 3).

Table 9 tabulates the normalized L2 errors in the total water column height Hh at the final time of simulation tf . As pre-
sented in the previous section, data are grouped according to p. In each group, we highlight the combination of DG basis and
the mesh configuration that overall yields the most accurate solutions. The results for other combinations are tabulated as
the ratio of the error from the specific scheme to the error associated with the most accurate scheme. The last column in this
table reports the numerical order of convergence of each DG scheme. All DG schemes, regardless of bases or mesh configu-
rations, converge approximately at the rate of Oðhpþ1Þ for the total water column height Hh. It can be observed that the NDG
scheme on quadrilateral meshes yields the most accurate solution among the combinations of bases and mesh configura-
tions. The PNDG scheme on mixed meshes are less accurate than the other schemes. The data from the calculation on the
mixed meshes indicates, as expected, that the less accurate element type dictates the error levels. More precisely, it can
be observed that the PNDG solution on mixed meshes is less accurate in comparison to the PNDG solution on triangular
meshes; their error ratios drift further apart as p increases. This clearly reflects the effect of using the less accurate quadri-
lateral polymorphic elements. On similar resolution, the NDG scheme on a mixed mesh, within the range of p tested, yields a
less accurate solution than the schemes on triangular meshes; however, their accuracies overall appear to be closer as p in-
creases. This indicates that the error levels in the NDG solutions on mixed meshes is strongly dictated by the presence of
triangular nodal elements.

Fig. 10(a)–(f) shows on a log–log scale, the accuracy of Hh through the L2 error versus the computing times required in the
simulations. Each curve represents data from the DG solution with a given p on various mesh resolutions. See the legends
accompanying the plot for the combinations of DG basis, mesh configuration, and interpolation degree p with which the
curves are associated. Additionally, in each figure, the data from the PNDG scheme on triangles is plotted for comparison
purposes. As the curves appear as straight lines, the cost functions are well approximated by Tc ¼ c2ðEHÞs2 . Table 10 tabulates
the constant pairs ðc2; s2Þ of the cost function associated with the DG schemes tested. Roughly speaking, the computational
costs of the DG schemes are proportional approximately to E�2:7=ðpþ1Þ

H .
To examine the effect of p from a cost per accuracy perspective, we evaluate from the derived cost functions the comput-

ing cost required to achieve the specified error levels e. Table 11 tabulates these data for each DG solution on unstructured
meshes. Note that the number inside the parenthesis corresponds to the computational cost ratio of the estimated runtime of
the ðp� 1Þ scheme to that of the p scheme for the identical accuracy level. In other words, it reflects the gain in cost efficiency



Table 9
DG solutions on unstructured meshes. Normalized L2 errors in Hh; EH � jXj�1=2kH � HhkXh

of the overall most accurate scheme for a given order p, error ratios
(specific scheme relative to the most accurate for that p), and rate of h-convergence. A code [ppmn] denotes the DG method preceding it.
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achieved by increasing the interpolation order by one. The data, which exhibits a similar trend to the DG solutions on regular
meshes, clearly show the benefit of using the higher order schemes. More precisely, to achieve a specified level of accuracy,
the computational cost required for the high order scheme is considerably less than that required for the scheme with p ¼ 1.
As an example, for a specified accuracy of e ¼ 1:0� 10�5 or 1:0� 10�7, the computational cost of the schemes with p ¼ 3 are
typically three to four orders of magnitude lower than the schemes with p ¼ 1. The computational cost for a specified level of
error decreases as the interpolation order p used in the scheme increases; however, the benefit gain from raising the inter-
polation order p eventually diminishes as indicated by the reduction in the cost ratios. Although the scheme with p ¼ 2
exhibits the highest cost reduction from the perspective of comparing the cost required in the scheme with p to that required
in the scheme with p� 1, the use of schemes with p ¼ 3 appears, to some extent, to be more appealing in the sense that the
scheme yields significant gains in performance over the scheme with p ¼ 1 while still showing relatively large gains when
compared to the scheme with p ¼ 2.

Table 12 compares the cost for a given accuracy level from the different DG schemes. In this table, the results of the NDG
scheme on triangles are highlighted in the gray box. The results of the other schemes are reported as a ratio of the estimated
time of the specific scheme to that of the NDG scheme on triangles for the same interpolation order p (the higher the ratios,
the higher the computational cost required to achieve a specified level of accuracy in comparison to the PNDG scheme on
triangles). It is noticed that the PNDG scheme on mixed meshes, which is the fastest scheme, is less efficient than other
schemes from a cost per accuracy performance perspective. This indicates that the gain in computing time achieved by intro-
ducing quadrilateral elements in the PNDG scheme is not enough to offset the loss of accuracy. The NDG scheme on mixed
elements exhibits approximately the same cost performance as the NDG scheme on triangular elements for the ranges of
interpolation order p tested. The NDG scheme on quadrilateral meshes, which yields the most accurate solution, performs
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(c) PNDG mixed tri-quad (d) NDG mixed tri-quad
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(e) PNDG polygon (f) NDG tri
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Fig. 10. Normalized errors jXj�1=2kH � HhkX at tf ¼ 97200 vs. computing times (in seconds) in DG solutions on unstructured meshes. Solid lines represent
the data of (a) PNDG on quad meshes, (b) NDG on quad meshes, (c) PNDG on mixed tri–quad meshes, (d) NDG on mixed tri–quad meshes, (e) PNDG on
polygon meshes, and (f) NDG on tri meshes. Dash lines in (a–d) represent the data of PNDG on triangles:�r� p ¼ 1;� � � p ¼ 2;��� p ¼ 3;�O� p ¼ 4, and
�M� p ¼ 5.
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slightly better than the NDG schemes on triangular meshes for p 6 3. Note that, on the same mesh resolution, the wall clock
times of the quadrilateral NDG scheme are higher than that of the triangular DG scheme for p P 2; for p ¼ 1, the quadrilat-
eral NDG scheme runs slightly faster than the triangular NDG scheme (this behavior reflects the fact that, for the considered
mesh setting, the total DOFs of the quadrilateral NDG solution is higher than that of the triangular DG solution for p P 2).
This suggests that the element size transition play a role in obtaining a full benefit of the tensor-product quadrilateral ele-



Table 10
DG solutions on unstructured meshes. Constant and rate ðc2 ; s2Þ in the cost functions Tc ¼ c2ðEHÞs2 .

DG bases & mesh Cost coefficients ða; sÞ

p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5

NDG tri (0.04,�1.42) (0.14,�0.90) (0.38,�0.68) (0.43,�0.56) (1.32,�0.45)
NDG quad (0.07,�1.32) (0.16,�0.88) (0.42,�0.67) (0.52,�0.56) (1.11,�0.47)
NDG mixed (0.05,�1.37) (0.26,�0.86) (0.58,�0.65) (0.72,�0.54) (1.18,�0.46)
PNDG tri (0.03,�1.42) (0.13,�0.89) (0.43,�0.65) (0.49,�0.54) (0.91,�0.45)
PNDG quad (0.02,�1.41) (0.52,�0.81) (0.52,�0.64) (0.73,�0.52) (1.51,�0.43)
PNDG mixed (0.04,�1.37) (0.36,�0.84) (0.67,�0.67) (1.78,�0.51) (3.75,�0.42)
PNDG ngon (0.05,�1.34) (0.18,�0.90) (0.48,�0.66) (1.03,�0.52) (2.69,�0.44)

Table 11
DG solutions on unstructured grids. Computing time Te

c (in seconds) required to achieve a given level of error e in Hh . A numeric value in the parenthesis
denotes the ratio between Te

c of a DG scheme with interpolation order p� 1 and that of p.

DG bases & mesh p Computing time Te
c

e = 5.0e�04 e = 1.0e�05 e = 1.0e�07 e = 1.0e�09

NDG tri 1 1898 488,329 3.359e+08 2.311e+11
2 134(14.1) 4548(107.4) 287597(1168.0) 1.819e+07(12704.5)
3 64(2.1) 910(5.0) 20509(14.0) 462393(39.3)
4 31(2.1) 283(3.2) 3788(5.4) 50687(9.1)
5 39(0.8) 223(1.3) 1736(2.2) 13496(3.8)

NDG quad 1 1550 269,879 1.172e+08 5.092e+10
2 124(12.5) 3848(70.1) 218479(536.6) 1.240e+07(4104.7)
3 66(1.9) 890(4.3) 19022(11.5) 406775(30.5)
4 36(1.8) 322(2.8) 4225(4.5) 55453(7.3)
5 38(0.9) 238(1.4) 2040(2.1) 17464(3.2)

NDG mixed 1 1641 352,711 1.964e+08 1.093e+11
2 175(9.4) 5019(70.3) 261323(751.4) 1.361e+07(8033.4)
3 78(2.2) 975(5.1) 19015(13.7) 370794(36.7)
4 44(1.8) 360(2.7) 4312(4.4) 51679(7.2)
5 37(1.2) 225(1.6) 1875(2.3) 15628(3.3)

PNDG quad 1 1040 256,843 1.683e+08 1.103e+11
2 239(4.4) 5603(45.8) 230058(731.6) 9445666(11677.9)
3 68(3.5) 826(6.8) 15740(14.6) 299839(31.5)
4 38(1.8) 292(2.8) 3202(4.9) 35154(8.5)
5 41(0.9) 219(1.3) 1573(2.0) 11289(3.1)

PNDG mixed 1 1237 262,204 1.436e+08 7.866e+10
2 218(5.7) 5886(44.5) 284620(504.6) 1.376e+07(5715.3)
3 109(2.0) 1494(3.9) 32705(8.7) 716092(19.2)
4 84(1.3) 606(2.5) 6252(5.2) 64476(11.1)
5 85(1.0) 467(1.3) 3459(1.8) 25637(2.5)

NDG polygon 1 1356 252,596 1.188e+08 5.584e+10
2 164(8.3) 5511(45.8) 345118(344.1) 2.161e+07(2583.7)
3 75(2.2) 1012(5.4) 21551(16.0) 458959(47.1)
4 54(1.4) 411(2.5) 4523(4.8) 49727(9.2)
5 53(1.0) 346(1.2) 3119(1.5) 28132(1.8)
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ments. It can be seen from Table 12 that the PNDG scheme on triangles exhibits higher cost-per-accuracy performance than
the NDG scheme on triangles. This stems, however, from the fact that the RKF45 time integrator employ larger values of Dt
for the PNDG solution on triangles, thus resulting in faster runtimes and higher performance. We note that the PNDG scheme
and NDG scheme on triangles show similar performance when using the SSPRK4 time integrator with the time step size
being selected based on the CFL-type condition.

As indicated by the numerical results reported above and in the previous section, we note that the high order schemes
offer significant benefits in terms of cost per accuracy. Although the considered choices of DG polynomial bases and element
shapes have an implication on the numerical performance, their impact are not as noticeable in comparison to the use of a
high-order scheme.

4.3. Nonlinear Stommel problem

We note that realistic scenarios of coastal flow problems usually involve a number of factors e.g., spatially varying
bathymetry, curved boundaries, bottom friction, surface wind stress. In this section, we apply the DG schemes to the



Table 12
DG solutions on unstructured meshes. Computing times Tp;e

c for a specified level of error e in Hh of the PNDG triangular solution with a given p and time ratios
(given schemes relative to the PNDG scheme on triangles for that p). A code [mn] denotes the DG scheme preceding it.
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nonlinear Stommel problem. Although it is relatively simple, the Stommel problem contains a number of physical processes
encountered in the realistic application of SWE and serves as a good prototype for ocean circulation problems.

The so-called nonlinear Stommel problem [7,37] modifies the Stommel problem [38] by including the nonlinear advective
term. More precisely, we consider the flow problem governed by the SWE (1) in a rectangular ocean basin of ½0; L	2 with
source terms that include Coriolis force, surface wind stress, and linear bottom friction, i.e.,
Fx ¼ f vH þ ssx

q0
� cuH; Fy ¼ �fuH þ ssy

q0
� cvH ð41Þ
where f denotes the Coriolis parameter, ðssx; ssyÞ represents the surface wind stress, q0 is the water density, and the constant
c is the bottom friction coefficient. The Coriolis parameter is taken as f ðyÞ ¼ f0 þ bðy� L=2Þ and the wind stress as
ssx ¼ �s0 cos
py
L


 �
; ssy ¼ 0: ð42Þ
Note that (42) is a simple form of the surface stress associated with the Trades and Westerlies [38]. At the basin boundaries,
we consider the no-normal flow boundary condition
u � n ¼ 0: ð43Þ
The no-normal flow condition is imposed weakly using an implementation given in Appendix C.
In the numerical simulations, the values of parameters are as follows: L ¼ 106, f0 ¼ 10�4; b ¼ 10�11 1/m, g ¼ 10 m/s2,

q0 ¼ 1000 kg/m3, s0 ¼ 0:2 N/m2, and c ¼ 2� 10�6 (except for the value of c, these parameters are identical with those em-
ployed in [37]). The steady state is declared when the difference between the solution at time level t ¼ ðnþ 1Þdf and at
t ¼ ndf are sufficiently small, more specifically,
kHðx; ðnþ 1Þdf Þ � Hðx; ndf Þk1 < es; n 2 N: ð44Þ
Here, the condition above is checked every df ¼ 7200 s and unless otherwise indicated es ¼ 5� 10�6. Unless otherwise indi-
cated, the numerical calculations are initiated with quiescent flow
fðx;0Þ ¼ Hðx;0Þ � zb ¼ 0; ðuHÞðx;0Þ ¼ 0: ð45Þ
Here, the Stommel problems with a flat and non-flat bathymetry are considered. Results for the test problem with flat
bathymetry are presented in the following subsection. Subsequently, in Section 4.3.2, we report numerical results for the
non-flat bathymetry problem. We also discuss in Section 4.3.2 issues concerning a preserving-still-water property (also
known as the well-balanced property) of the DG schemes for a problem with non-flat bathymetry.

4.3.1. Flat bathymetry problem
For the flat bed problem, we consider the ocean basin with a bathymetric depth zb ¼ 1000 m. We examine the numerical

performance of the NDG scheme on rectangles and on triangles. For brevity, we present only the results from the NDG
scheme on rectangles. We consider five sequentially refined meshes of uniform rectangular elements; the coarsest mesh
consists of 5� 5 rectangles (Dx ¼ Dy ¼ L=5) and the finest mesh consists of 80� 80 rectangles (Dx ¼ Dy ¼ L=80). We conduct
the study for the NDG scheme with p ¼ 1;2, and 3. The values of ðer; eaÞ in the RKF45 time integrator are set to
ð7:5� 10�6;1� 10�9Þ. It is noted that the time-independent linear Stommel problem has an exact solution (see [38,7,37]).
However, there is no exact solution to the nonlinear Stommel problem. To measure errors in the numerical solutions, we
use the approximate solution obtained from a high-resolution calculation, more precisely, from the DG scheme with
p ¼ 7 on the 10� 10 rectangular mesh and ðer ; eaÞ ¼ ð1� 10�7;1� 10�12Þ, as a reference solution.



Fig. 11. The free surface elevation f ¼ H � zb (left) and the velocity magnitude juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

(right) at the steady state of the nonlinear Stommel problem
obtained from the nodal DG scheme on rectangles. (a) Solution from using p ¼ 1 on the mesh of 20� 20 rectangles; (b) solution from using p ¼ 2 on the
mesh of 10� 10 rectangles.
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Fig. 11 plots the free surface elevation f ¼ H � zb (left column) and the velocity magnitude juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

(right column)
at steady state. The result shown in Fig. 11(a) is obtained from the scheme with p ¼ 1 (bi-linear element) on the mesh of
20� 20 rectangles and in Fig. 11(b) from a scheme with p ¼ 2 (bi-quadratic element) on a mesh of 10� 10 rectangles. It
can be observed that the results from these two simulations qualitatively agree well with the reference solution shown in
Fig. 12. Note that, for most calculations, the steady state is reached at approximately t ¼ 84:8 days (we intentionally use
a larger value of the bottom friction coefficient c than that used in [7,37] so that the steady state is reached at an earlier
time). Fig. 13 plots, on a log–log scale, errors in the approximate solution Hh and ðuHÞh through the L2 norm against the ele-
ment sizes. In the plots, the element sizes are measured through

ffiffiffiffiffiffiffi
Nel
p

and the values of errors are normalized by kZbk2. A
slope of each log–log plot, which indicates an overall numerical order of convergence, is reported to the right of the subfig-
ures. For p > 1, the numerical solution exhibits an order of convergence typically close to pþ 1=2 in the L2-norm.

Fig. 14 shows, on a log–log scale, computing times plotted against h�1
w

ffiffiffiffiffiffiffi
Nel
p

. On a given mesh, computing times increase
with the interpolation order p, as expected. It can be noticed that the log–log plots appear as straight lines; this implies that
the computing time behaves approximately like chs with respect to element size. The numerical rate s is approximately �3



Fig. 12. Reference solution of the nonlinear Stommel problem. The free surface elevation f ¼ H � zb (left) and the velocity magnitude juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

(right).
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and appears to be independent of p (the constant c, as expected, depends on p). Fig. 15 depicts, on a log–log scale, the nor-
malized L2 error in Hh as a function of computing time. Each curve shows a relation between the computing cost and accu-
racy of the DG solution with a given order p. Since the log–log plots appear approximately as straight lines, the cost functions
can therefore be well approximated by Tc ¼ c2ðEHÞs2 (with s2 � �3=ðpþ 1Þ). More precisely, the cost functions for the total
water column height H are as follows
Tc ¼ c2ðEHÞs2 ; with ðlog c2; s2Þ ¼
ð�10:18;�1:40Þ for p ¼ 1
ð�9:60;�1:05Þ for p ¼ 2
ð�7:68;�0:84Þ for p ¼ 3

8><>: ð46Þ
where EH represents the error in Hh in the L2 norm normalized by kzbk2. In Table 13, we tabulate from (46) the computing
times for different error levels. The value inside a parenthesis is a ratio between the cost of the scheme with p� 1 to that of p.
It can be seen that the high order scheme shows a clear advantage over the scheme with p ¼ 1 from the cost per accuracy
aspect. For instance, at the error level of 1� 10�7 or 5� 10�7, the computational cost in the DG solution with p ¼ 3 is about
three orders of magnitude lower than the DG solution with p ¼ 1. All these convergence and cost per accuracy analyzes show
similar behavior to the manufactured solution problem presented in Section 4.2.

We also report in Table 13 the data that comes from the cost functions of the NDG solution on triangles (the triangular
meshes considered are built in a way similar to those described in Section 4.2.1, i.e., by bisecting rectangular elements of the
rectangular elements). It can be observed that the scheme on rectangles has lower costs per accuracy (ranging approximately
from 1.3 to 2.5 times lower) than the NDG solution on triangles. We note the numerical order of convergence in H of the NDG
scheme on triangles is slightly higher than that of the scheme on rectangles (the opposite of the convergence rate in uH and
vH); on the same so-called mesh resolution, the scheme on rectangles is faster than the scheme on triangles for all p
considered.
4.3.2. Non-flat bed problem
4.3.2.1. Preserving still water flow. One concern of DG or other methods that are based on the conservative form of shallow
water equations involves their ability to preserve the state at rest solution
uðxÞ ¼ 0 and f ¼ HðxÞ � zbðxÞ ¼ C; ð47Þ
where f denotes the surface elevation and C is a constant value, in the time marching process. Note that a typical problem
that admits (47) as a solution is flow in an enclosed basin in the absence of wind forcing term. Schemes that preserve such
the state, i.e., fh remains constant and uh remains zero at all time, are called a well-balanced scheme [16,17]. To obtain a well-
balanced property, numerical schemes are devised so that the right-hand-side terms vanish for a given approximate solution
of the state at rest solution.

Here, we provide a treatment for obtaining the well-balanced property in the scheme using the nodal basis and conform-
ing mesh and order (although not discussed here, we note that this treatment is also directly applicable to some modal-
based DG schemes). The approximate solution discussed below, unless specified, is associated with the steady state at rest
solution (47). We also assume here that the bathymetry zb is continuous. In this treatment, the bathymetry is replaced by an



Fig. 13. Error and convergence rate in the approximate solution at steady state for the nonlinear Stommel problem. (a) The normalized L2-error in the total
water column kHref � Hhk2=kzbk2 as a function of h�1

w

ffiffiffiffiffiffiffi
Nel
p

; (b) the normalized L2 error in the x-directed water discharge kðuHÞref � ðuHÞhk2=kzbk2 as a
function of h�1

w

ffiffiffiffiffiffiffi
Nel
p

.
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interpolant of degree identical to the nodal basis considered. More precisely, when employing the nodal basis of degree p, the
bathymetry in the element K is approximated by the interpolant of degree p, namely,
zbðxÞ � zh;b � ðIzbÞ ¼
XMp

m¼1

zbðxmÞ/mðxÞ; ð48Þ
where, as a reminder, /m denotes nodal basis functions, xm the location of nodal points, and Mp denotes the number of nodal
points. Adopting (48) leads to Hh � zh;b ¼ C for all x 2 K (as a reminder, Hh is the interpolant H and in this case H ¼ C � z). For
continuous zb, the approximate bathymetry zh;b is piecewise continuous; this results in a single-valued Hh on the element
interfaces. Substituting the approximate solution qh ¼ ðHh; ðuHÞh ¼ 0Þ and zb;h into the DG-SWE weak formula yields the fol-
lowing right hand side term
r ¼

0Z
K

1
2 gH2

h
@vh
@x dx�

Z
@K

bF2 � nvhdsþ
R

K gHhvh
@zh;b
@x dxZ

K

1
2 gH2

h
@vh
@y dx�

Z
@K

bF3 � nvhdsþ
Z

K
gHhvh

@zh;b
@y dx

0BBBB@
1CCCCA ð49Þ
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Fig. 14. Nonlinear Stommel problem: wall clock time as a function of h�1
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Fig. 15. Nonlinear Stommel problem: error kHref � Hhk2=kzbk2 as a function of the wall clock time.

Table 13
Nonlinear Stommel problem. Computing time Te

c required to achieve a specified level of error in Hh of the nodal DG solution on rectangles and on triangles. A
numeric value in the parenthesis is the ratio between Te

c of a scheme with p� 1 and that of p.

Scheme p Computing time Te
c � TcðeÞ

e = 1e�06) e = 1e�07 e = 5e�08 e = 2.5e�09

NDG quad 1 8903.63 221114.35 581525.45 37981329.79
2 133.72(66.58) 1497.62(147.64) 3099.16(187.64) 71826.86(528.79)
3 49.08(2.72) 337.61(4.44) 603.31(5.14) 7416.56(9.68)

NDG tri 1 17228.01 462327.69 1244617.57 89915965.39
2 402.83(42.77) 3673.19(125.87) 7145.11(174.19) 126735.88(709.48)
3 88.55(4.55) 530.26(6.93) 908.80(7.86) 9326.77(13.59)
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for all vh 2 PpðKÞ, where bF2 � n ¼ ð1=2ÞgH2
hnx and bF3 � n ¼ ð1=2ÞgH2

hny are the normal numerical fluxes for the x- and y-
momentum equations evaluated at qh, respectively. It can be verified by integrating by-parts the first term of (49) and using
Hh ¼ C � zh;b that the right hand side term r vanishes, thus yielding a well-balanced property. Note that it is assumed here
that the bathymetry has no discontinuity. We refer to approaches in [18,20,11] for handling the discontinuous bed. Note that
the approaches devised in [18,20] use the L2-projection on PpðKÞ to approximate the bathymetry in each element. Generally,
this results in a discontinuous approximate bed. The well-balanced property in these approaches are accomplished through
the modified numerical fluxes that are based on the hydrostatic reconstruction technique [17].
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Note that, the integral formula (49) must be computed exactly in a numerical realization to obtain the well balance prop-
erty. For triangular elements (tensor product rectangle elements), this can be done by using quadrature rules that integrate
exactly the polynomials of degree 3p� 1 (3p) for the volume integral terms and 3p (3p) for the edge integrals (note that the
values in the parentheses are for the tensor-product rectangular elements). It can be checked that the nodal-integration pro-
cedure described in Section 3.1 does not meet this requirement, thus rendering the NDG scheme non well-balanced (see
numerical results below). We find that one can reduce the order of quadrature required in the numerical implementation,
which implies less computational work, by considering the widely-used equivalent alternative form of the SWEs [3,5], more
precisely, considering (1) with
Table 1
Well-ba

f-for

H-fo

M1 – N
M3 – n
q ¼
f

uH

vH

0B@
1CA; f ¼

uH

u2H þ 1
2 gðH2 � z2

bÞ
uvH

0B@
1CA; g ¼

vH

uvH

v2H þ 1
2 gðH2 � z2

bÞ

0B@
1CA; and s ¼

0
gf @zb

@x þ Fx

gf @zb
@y þ Fy

0B@
1CA; ð50Þ
where f ¼ H � zb denotes the surface elevation. It can be shown that, with this alternative form of the SWE, the associated DG
weak formula with the approximate bathymetry (48), uh ¼ 0; fh ¼ C, and ðH2

h � z2
h;bÞ ¼ CðHh þ zh;bÞ can be computed exactly

by using the quadrature rules that integrate exactly polynomials of degree up to 2p� 1 (2p) for the volume integrals and up
to 2p (2p) for the edge integrals when the triangular elements are considered (the values in the parentheses are for the ten-
sor-product rectangular elements). In other words, the quadratures of such accuracies are sufficient in order to achieve the
well-balanced property. Note that the quadratures required are less accurate than those required in the formula associated
with the SWE form of (2). In addition, it can be verified that the NDG scheme with the nodal-integration approach is well-
balanced when (50) is considered.

To examine the well-balanced property, we consider a rectangular enclosed basin of ½0; L	2; L ¼ 106, with the bathymetry
zb ¼
3zb;0

4
� zb;0

4
tanh

1
2� 105 �

ffiffiffi
2
p

2
xþ

ffiffiffi
2
p

2
y� L

5

 !" #
; ð51Þ
where zb;0 ¼ 1000 and the state at rest as the initial condition
fðx; t ¼ 0Þ ¼ Hðx; t ¼ 0Þ � zbðxÞ ¼ f0; uH ¼ 0: ð52Þ
where f0 ¼ 1=4. In this study, we include the Coriolis force and a linear bottom friction term; surface wind stress is excluded.
The values of the physical parameters are identical to those listed in Section 4.3.

Below, we report the results obtained by utilizing three different ways in realizing the integrals in the DG weak formula
based on the nodal basis expansion on triangular elements. The first approach (M1) considered is the NDG scheme. This
scheme, as a reminder, uses the nodal-integration approach for realizing the integration terms (see Section 3.1). The second
and third approaches use the quadrature formula in evaluating the integrals. In the second approach (M2), the area integrals
are computed by means of a quadrature rule that integrates exactly polynomials of degree up to 2p and the edge integrals are
evaluated by a quadrature rule that integrates exactly polynomials of degree up to 2pþ 1. The third approach (M3) employs
quadrature rules that integrate polynomials of degree up to 3p� 1 for an area integration and up to 3p for an edge integra-
tion. Note that, in the M2 and M3 approaches, we use the cubature rules provided in [39] for the area integration over a tri-
angle and use the classical one-dimensional Gauss quadrature rule for the edge integration. For brevity, the SWEs with (2) is
termed the H-form SWE and the SWE with (50) the f-form SWE. The numerical solutions are computed on a triangle mesh
consisting of 800 elements constructed by bisecting a uniform grid of 20� 20 points. We use the RKF45 time integrator with
the tolerance er ¼ 5� 10�7; ea ¼ 5� 10�12. The calculations are performed until t ¼ 10 days (86,400 s) is reached. Table 14
tabulates the absolute maximum errors at the nodes in the total water column Hh and the x-directed discharge ðuHÞh at
t ¼ 10 days. It can be clearly observed from this table that, in the H-form SWEs, the M3 approach exhibits the well-balanced
4
lanced test. Absolute maximum errors at the nodes in Hh and ðuHÞh at t ¼ 10 days.

p kH � Hhkl;1 kuH � uHhkl;1

M1 M2 M3 M1 M2 M3

m 1 1.137e�13 2.274e�13 2.274e�13 3.759e�11 1.263e�10 1.263e�10
2 2.274e�13 3.411e�13 3.411e�13 4.104e�10 5.713e�10 5.649e�10
3 4.548e�13 5.684e�13 7.958e�13 3.175e�09 5.500e�09 1.050e�08
4 7.958e�13 2.274e�12 1.251e�12 8.579e�09 1.914e�08 2.034e�08

rm 1 3.410e+00 1.211e�11 1.211e�11 2.809e+07 1.568e�08 1.568e�08
2 9.386e�02 9.997e�04 7.969e�11 2.497e+01 2.884e�01 2.269e�07
3 3.359e�03 1.984e�05 4.940e�10 9.260e�01 1.789e�02 3.385e�06
4 1.678e�04 2.104e�06 6.096e�10 6.978e�02 1.784e�03 6.308e�06

DG scheme; M2 - nodal basis, quadrature rules (2p;2pþ 1).
odal basis, quadrature rules ð3p� 1;3pÞ.



Table 15
Nonlinear Stommel problem with linear bed and (54) surface wind stress. Absolute maximum at the nodes of surface elevation and x-directed discharge at
steady state.

p kfhkl;1 kuHhkl;1

M1 M2 M3 M1 M2 M3

1 7.517e�08 7.394e�08 7.394e�08 5.121e�06 4.643e�06 4.640e�06
2 7.885e�08 7.474e�08 7.475e�08 6.841e�06 6.858e�06 6.858e�06
3 8.001e�08 7.579e�08 7.579e�08 7.363e�06 7.357e�06 7.357e�06
7 7.964e�07 7.560e�08 7.560e�08 7.809e�06 7.792e�06 7.793e�06

M1 – NDG scheme; M2 - nodal basis, quadrature rules (2p;2pþ 1).
M3 – nodal basis, quadrature rules ð3p� 1;3pÞ.

Fig. 16. The free surface elevation f ¼ H � zb (left) and the velocity magnitude juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

(right) at the steady state of the nonlinear Stommel problem
with linear bathymetry obtained from the NDG scheme. (a) Solution from using p ¼ 1 on the mesh of 80� 80 rectangular elements; (b) solution from using
p ¼ 8 on the mesh of 10� 10 rectangular elements.
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property; the NDG scheme (M1) is not well-balanced and in fact it yields poor results especially for low order p. For the f-
form SWEs, all three approaches exhibit the well-balanced property of the state at rest solution. This indicates that the well-
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balanced property can be obtained with less computationally expensive realizations in the f-form SWEs. These observations
on the numerical results verify the discussion above on the well-balanced issues.

4.3.2.2. Stommel problem with linear bed. We consider a problem described in Section 4.3 with a linear bathymetric profile
Fig. 17.
Errors i
zb ¼
zb;0

2
1� 1

2L
ð�xþ ðy� LÞÞ

� 
ð53Þ
where zb;0 ¼ 1000. Note that the deepest and shallowest points of the basin are at the southeast and northwest corners,
respectively. In the calculations, we use identical meshes and parameters employed in the flat bathymetry test case (see Sec-
tion 4.3.1). The f-form of SWE is considered in the study below and, unless otherwise indicated, we note that results reported
below are of this SWE form.

We first examine whether the approximate solutions evolve to the steady state at rest when the effect of surface wind
stress is removed after a certain time. Here, we consider the case where the surface wind stress is given by
ssx ¼ �
s0

2
1� tanh

t � Ts

Tr

� �� 
cos p y

L


 �
; ssy ¼ 0; Ts ¼ 8 days; Tr ¼ 0:5 days: ð54Þ
The effect of the wind forcing term begins subsiding around t ¼ 7:5 days and is completely absent for large t. The integration
is started with the initial condition (52) and is carried out until reaching steady state or t ¼ 150 days, whichever comes first.
Nonlinear Stommel problem with linear bathymetry: log–log plots of errors at t ¼ 12 days in the L2-norm normalized by kzb0k2 versus h�1
w

ffiffiffiffiffiffiffi
Nel
p

. (a)
n the surface elevation. (b) Errors in the x-directed water discharge.
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Fig. 18. Nonlinear Stommel problem with linear bathymetry: wall clock time as a function of h�1
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The steady state is declared based on the criteria (44) with es ¼ 10�8. We use the triangular mesh of 200 elements, which is
built from the 10� 10 uniform grid, in the calculation. Table 15 tabulates absolute maximum values at the nodes in the stea-
dy state solution from using different realizations of the nodal-basis based DG scheme (see the previous section for the
description of the implementation). We note that all three approaches yield steady state solutions approximately at
t ¼ 128 days. The result demonstrates that the less expensive realizations (M1 and M2 approaches) do not deteriorate
the quality of the solution that evolves to the steady state at rest solution.

Subsequently, we consider the problem with the persistent surface wind stress (42) and consider the f-form SWE. Here,
we focus mainly on examining numerical performance of the NDG scheme (M1 scheme). Fig. 16 illustrates the approximate
solution fh and ðuHÞh at steady state obtained using the rectangular elements. Fig. 16(a) shows the solution using p ¼ 1 on
the mesh of 80� 80 elements and Fig. 16(b) the solution using p ¼ 8 on the mesh of 10� 10 elements. Note that the steady
state is declared when the criteria (44) with es ¼ 10�8 is satisfied. It can be seen that, a center of circulation is near the south-
west corner of the basin and water piles up in the vicinity of such a circulation center. The steady state is reached at approx-
imately t ¼ 103 days for most calculations. Note that, in the calculations on coarse triangular meshes and high p (p P 7), the
NDG scheme fails to yield a steady state solution. We believe this is due to aliasing errors. Applying a mild spectral filter [25]
appears to resolve this instability issue. Note that we do not see such an instability issue in the M2 and M3 approaches which
utilize the quadrature rules in realizing the DG weak formula.

In assessing the numerical performance, the calculations are carried out until t ¼ 12 days and unless otherwise indicated
numerical results discussed below are the results at this specific time. The tolerance ðer ; eaÞ in the RKF45 time integrator are
set to ð7:5� 106;1� 10�9Þ in the calculations. As done in the flat-bathymetry case, we use the approximate solution from a
high-resolution calculation as a reference solution. More specifically, the approximate solution from the NDG scheme with
p ¼ 7 on the 10� 10 rectangular mesh and ðer ; eaÞ ¼ ð1� 10�7;1� 10�12Þ is used as the reference solution for assessing
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Fig. 19. Nonlinear Stommel problem with linear bathymetry: error kfref � fhk2=kzbk2 as a function of the wall clock time.



Table 16
Nonlinear Stommel problem with linear bed: computing time Te

c required to achieve a specified level of error in Hh of the nodal DG solution on rectangles and
on triangles. A numeric value in the parenthesis is the ratio between Te

c of a scheme with p� 1 and that of p.

Scheme p Computing time Te
c � TcðeÞ

e = 1e�06 e = 1e�07 e = 5e�08 e = 2.5e�09

NDG quad 1 2510.45 99096.31 299635.78 35763219.21
2 112.89(22.24) 1630.82(60.76) 3643.57(82.24) 117599.81(304.11)
3 50.40(2.24) 430.14(3.79) 820.21(4.44) 13348.67(8.81)

NDG tri 1 7692.93 268412.10 781995.33 79490736.19
2 190.71(40.34) 2497.78(107.46) 5418.23(144.33) 153935.97(516.39)
3 77.64(2.46) 618.55(4.04) 1155.28(4.69) 17189.70(8.96)
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numerical performance. For brevity, we present, unless specified, the results from the NDG scheme on triangles. Fig. 17 plots,
on a log–log scale, errors in fh and ðuHÞh through the L2-norm against the element sizes measured by

ffiffiffiffiffiffiffi
Nel
p

. Note that the
values of errors in these plots are normalized by kzbk2. Overall numerical orders of convergence are reported in the tables
to the right of each subfigures. We note that the numerical solution converges at the rate close to pþ 1=2. Fig. 18 plots,
on a log–log scale, wall-clock times as a function of h�1

w

ffiffiffiffiffiffiffi
Nel
p

. The value of overall slope of each curve, which appears to
be independent of p, is approximately 3. Fig. 19 shows the log–log plots of the normalized L2 errors in fh against the wall
clock times. The plots appear approximately as straight lines in the log–log scale; this indicates that the relation between
the computing cost and the accuracy can be approximately described by T ¼ c2ðEhÞs2 , with s2 � �3=ðpþ 1=2Þ. More precisely,
the cost functions for a given level of accuracy Eh in the surface elevation fh are approximately as follows
Tc ¼ c2ðEfÞs2 ; with ðlog c2; s2Þ ¼
ð�12:36;�1:54Þ for p ¼ 1
ð�10:18;�1:12Þ for p ¼ 2
ð�8:09;�0:90Þ for p ¼ 3

8><>: ð55Þ
Table 16 tabulates from the cost functions the computing times for achieving different levels of accuracy. In addition, we
include in this table data from the cost functions of the NDG scheme on rectangles. The value inside a parenthesis is a cost
ratio of the scheme with p� 1 to the scheme with p for the same given level of error. It can be observed that the high order
schemes outperform the scheme with p ¼ 1 in terms of cost to achieve a specific level of accuracy. To achieve the same level
of accuracy, the costs of the DG solution with p ¼ 3 are almost two to three order of magnitude lower than the linear DG
solution. Data in this table also indicate that the NDG solution on rectangles has higher performance (ranging approximately
between 1.3 and 3 times) than the NDG solution on triangles. The gain from employing rectangular elements is minor in
comparison to the gain from using the high order schemes. We note that the characteristics of the DG solution in terms
of convergence and cost per accuracy are similar to those observed in the manufactured solution test case (Section 4.2)
and the flat-bed Stommel test problem (Section 4.3.1).

5. Conclusions

In this work, we present a comprehensive performance assessment of LLF-flux nodal discontinuous Galerkin (NDG) and
polymorphic nodal discontinuous Galerkin (PNDG) solution of the time-dependent nonlinear SWE. The integration in time is
carried out using the RKF45 time integrator, which has a mechanism to adjust Dt to control temporal errors. These methods
are applied to a set of problems with sufficiently smooth solutions: a manufactured-solution problem and the nonlinear
Stommel problem with flat- and non-flat bathymetry.

The numerical solutions show that all the schemes tested exhibit a convergence rate of order between OðhpÞ and Oðhpþ1Þ,
typically close to pþ 1=2, for the water column height. The performance analyzes clearly show that the high-order schemes
(p > 1) outperform the linear-element scheme in terms of cost per accuracy performance. For a specified level of error, the
computational cost required decreases noticeably as the degree p of the DG polynomial increases. In the test problems em-
ployed here, for a moderate specified level of error, the computational cost for the schemes with p ¼ 3 are typically about
two to four orders of magnitude, in other words a hundred to ten thousand times, lower than the scheme with p ¼ 1. The
benefit gained by employing a one-higher order interpolant however diminishes as the interpolation order p increases.
We find that the use of cubic or bi-cubic interpolants (p ¼ 3), is particularly appealing due to dramatic improvement in cost
as compared to (bi-) linear interpolants and moderate gain over (bi-) quadratic interpolants.

In addition, we examine whether element shapes other than triangles, in particular quadrilaterals, which reduce the num-
ber of elements in the computational mesh would improve the efficiency of DG solutions. Here, we consider a mesh setting in
which computational meshes of various element shapes are derived from a given triangular mesh. The numerical results pro-
vide evidence that there may be a benefit in using quadrilateral elements, especially, those with nodal tensor-product bases.
In the numerical experiments conducted, the NDG scheme on rectangles exhibits higher (or at worst comparable to) cost-
per-accuracy performance as compared to other schemes. We believe that this promising performance stems primarily from
two reasons. First, quadrilateral meshes contains fewer elements. Second, the tensor-product elements improve/retain the
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accuracy level owing to the tensor-product bases spanning additional cross polynomial terms for a given degree p. We note
that the performance benefit of the tensor-product schemes is however relatively minor in comparison to using high order
elements.

A treatment of the bed term that leads to a well-balanced scheme has been also discussed. Such a treatment is based on
replacing the bathymetry with an interpolant of the same degree with the DG interpolant and exact realization of the DG
weak formula at the still water state. The latter requirement renders the schemes, which uses the so-called nodal integration
approach in evaluating the integral terms, non well-balanced when the standard SWE form (2) is considered. We find that
when employing instead the equivalent, frequently-used form of SWE (50), the well-balanced property can be achieved with
less expensive realization technique, including the NDG scheme.

In this work, we use a manufactured-solution problem with a tide-like solution and wind-driven circulation problems.
Numerical evidence shown here suggests that there is a significant cost performance benefit achieved by using the high-or-
der DG method for these types of problems. A similar conclusion can be expected in general for smooth-solution problems,
since in these cases, high-order accuracy solutions can be expected when using the high-order DG methods. We note that the
cost performance benefit is also reported in high-order solutions to the Navier–Stokes equations with smooth solutions [40].
Although a problem with a curvilinear domain is not examined here, it is noted that, as demonstrated in our work [41], a
proper treatment of no-normal flow on solid curved walls is crucial for an accurate DG solution to the SWE, including a lin-
ear-element DG. Performance studies for problems that contain more challenging features such as wetting/drying fronts,
derivative discontinuities, and (inviscid) shocks are a subject of our future studies. Without going into detail, we note that,
with the features mentioned, high-order methods will not yield high-order accuracy solutions in a global sense using fixed
grid solutions. In areas away from these features where the solution is smooth, good convergence can still be expected pro-
vided that mechanisms that are in place to handle possible numerical artifacts that may be induced by these features pre-
serve accuracy in the smooth-solution areas.
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Appendix A. Evaluation of the stiffness matrix

In this section, we describe an approach used in evaluating the stiffness matrices defined in Section 3.1. Consider the stiff-
ness matrix associated with the x-directed flux, i.e.,
Sx ¼ ðSx;ði;jÞÞ; Sx;ði;jÞ ¼
Z

K

@/i

@x
/jdx; i ¼ 1; . . . ;Mp; j ¼ 1; . . . ;Mp: ðA:1Þ
To compute such a matrix, the partial derivative of /i with respect to x is written in the nodal representation, more precisely
@/i

@x
¼
XMp

n¼1

Dx;ðn;iÞ/nðxÞ
where
Dx;ði;jÞ �
@/j

@x

����
xi
denotes an entry of the so-called derivative matrix Dx. Substituting and manipulating yield the following result
Sx ¼ DT
x M ðA:2Þ
where M is a mass matrix (with respect to the nodal basis functions) defined and evaluated as follows
M �
Z

K
//T dx ¼ J

Z
K
ðV�1ÞT e/e/T V�1dn ¼ ðV�1ÞT V�1 ðA:3Þ
where J ¼ ðDXÞ2 is the Jacobian of the geometric transformation (14). The remaining task for determining the stiffness matrix
is to find the derivative matrix Dx. Since VT

/ ¼ e/, it follows that VT@/=@x ¼ @e/=@x. The derivative matrix can thus be deter-
mined from
DxV ¼ Dx ðA:4Þ
where Dx is a matrix with the entries
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Dx;ði;jÞ �
@e/j

@x

�����
xi

; i ¼ 1; . . . ;Mp; j ¼ 1; . . . ;Np
which can be computed easily in practice. It is noted that the stiffness matrix associated with y-directed flux,
Sy ¼

R
K @/=@y/T dx, can be computed in an analogous way.

Appendix B. Remarks on code implementation details

The main computing cost in the simulations involves evaluating of the right-hand-side term of the system of ODEs (33),
i.e., M�1rðeu; tÞ, which is required by the time integration solver for a given solution vector eu and time t. Algorithm 1 depicts,
in brief, an outline of the steps employed in the calculation of the right-hand-side vector. Here, a one-dimensional array is
used to store the global solution; the entries of the expansion coordinates belonging to the same element are kept in con-
secutive order. The right-hand-side term associated with the ith-element is determined within the ith-iteration of a loop
over the elements. It is obtained by combining the contribution from the volume integrals and edge integrals of all edge seg-
ments. As a reminder, in Algorithm 1, Si

x (and Si
y) denotes a (pre-computed) generalized stiffness matrix; the vectors f i

x and f i
y

denote, respectively, a vector of nodal coordinates of x- and y-directed flux (see Section 3.1). An edge segment is a straight
line and, for non-conforming elements, it is not the entire edge of an element. For conforming edges and order, an approach
similar to that utilized in treating a volume integral of the nonlinear flux term is adopted for the calculation of the edge inte-
gral, i.e., by writing the numerical flux bf h � n as a linear combination of one-dimensional Lagrange basis functions of order
p;/ ¼ f/mð1ðxÞÞ; 1 2 ½�1;1	; x 2 ð@KÞjgm¼1;...;p

, and determining the edge integral through

Algorithm 1. Right-hand-side (RHS) vector M�1rðeu; tÞ calculation

Given a vector of expansion coordinates eu ¼ fðeu1ÞT ðeu2ÞT � � � ðeuNe�1ÞT ðeuNe ÞTg
T

. Ne-the number of elements

for i ¼ 1 to Ne do
. contribution from volume integration

ri  Si
xf i

xðeuiÞ þ Si
yf i

yðeuiÞ
. contribution from edge integration

for j ¼ 1 to Ni
f do

. Ni
f -the number of edge segments of the ith-element

.
SNi

j

j¼1ð@KiÞj ¼ @Ki; ðð@KiÞj-jth-edge segment

ri  ri þ
R
ð@KiÞj

e/ibf � nds

end for

ri  ðM iÞ�1
ri

end for

Return RHS vector r ¼ ðr1ÞT ðr2ÞT � � � ðrNe�1ÞT ðrNe ÞT
n oT
Z
ð@KÞj

e/i
bf h � nds �

jð@KÞjj
2

Xpþ1

m¼1

Z 1

�1

e/i/md1
� 

ðbf h � nÞðxð1mÞÞ: ðB:1Þ
where 1ðxÞ is a linear coordinate transformation mapping x 2 ð@KÞj to 1 2 ½�1;1	 and f1mg denotes the set of interpolation
nodes with the Gauss–Lobatto node distribution. Although all numerical results reported here are solved on the conforming
meshes and orders, we note that the computer program used in the numerical tests also accommodates both non-conform-
ing elements and non-conforming orders and supports dynamically h- and p-adaptive refinement. For non-conforming edges
and/or order, the edge integrals are obtained through the use of a certain Gauss-quadrature. In both cases, the integral term
on an edge segment is written as a multiplication of the matrix of dimension Mp � �p and the vector of dimension �p (note that
�p denotes the number of points used in the integration and Mp the number of elemental basis functions). In the calculation of
the flux and the numerical flux, the interpolated values of the solution, when needed, are realized through the multiplication
of the appropriate Vandermonde matrix and a vector of modal expansion coordinates of the solution.

The computer code employed in the numerical simulations is written in Fortran 77 and Fortran 90. It is compiled using
the Intel� Fortran version 11.1 compiler with the optimization flag set to �03. Note that a significant portion of computing
time is spent on performing matrix–vector multiplications. We make extensive use of the Fortran Basic Linear Algebra Sub-
program (BLAS) level 2 [42] DGEMV() for matrix–vector multiplications. Such a subroutine involves OðM � NÞ operations
where M and N are the dimensions of the matrix considered. Numerical computations are conducted on dual six-core
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2.4 GHz AMD Opteron model 2431 64 bit 12 GB RAM nodes available at the Center for Research Computing at the University
of Notre Dame.

Appendix C. Implementation of no-normal flow boundary condition

To impose the no-normal flow condition (43), we use an approach similar to that traditionally employed in weakly
enforcing a so-called natural boundary condition in finite element methods. In this approach, the numerical flux on the
no-normal flow boundary is defined as
bF ¼ FðqbÞ ðC:1Þ
where the state qb ¼ ðHb;ubHb;vbHbÞ
T

is determined by setting
ðubHbÞ � n ¼ 0; ðubHbÞ � s ¼ ðuHÞ� � s; Hb ¼ H�: ðC:2Þ
where s is the unit-tangential vector of the no-normal flow boundary. The minus superscript is used to indicate the value of
variables on the boundary when approaching from the interior of the element. It can be easily verified that this setting
amounts to using the following numerical flux on the no-normal flow boundary
bF � n ¼ 0; F bnx; F bny
� �T

; F b � 1
2

gðH�Þ2 ðC:3Þ
where nx and ny denote the x- and y-component of the unit normal vector n, respectively. It can be seen that (C.3) has a van-
ishing value of flux for the continuity equation, thus weakly enforcing (43). Note that this implementation does not require a
Riemann solver.
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