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In this work, we consider the application of Discontinuous Galerkin (DG) solutions to 
open channel flow problems, governed by two-dimensional shallow water equations (SWE), 
with solid curved wall boundaries on which the no-normal flow boundary conditions are 
prescribed. A commonly used approach consists of straightforwardly imposing the no-
normal flow condition on the linear approximation of curved walls. Numerical solutions 
indicate clearly that this approach could lead to unfavorable results and that a proper 
treatment of the no-normal flow condition on curved walls is crucial for an accurate DG 
solution to the SWE. In the test case used, errors introduced through the commonly used 
approach result in artificial boundary layers of one-grid-size thickness in the velocity field 
and a corresponding over-prediction of the surface elevation in the upstream direction. 
These significant inaccuracies, which render the coarse mesh solution unreliable, appear 
in all DG schemes employed including those using linear, quadratic, and cubic DG 
polynomials. The issue can be alleviated by either using an approach accounting for errors 
introduced by the geometric approximation or an approach that accurately represents the 
geometry.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The shallow water equations (SWE) serve as an excellent model for incompressible flow with horizontal scales much 
larger than depth. The SWE are used extensively in modeling many environmental flows, such as tides, hurricane induced 
coastal flooding, open channel and riverine flow. Simulation of these problems often involves large, geometrically compli-
cated domains and integration over a long period of time. Numerical methods to accurately solve the SWE must be able 
to propagate long waves and accurately simulate convective processes. Successful continuous Galerkin (CG) finite element 
solutions to the SWE include, but are not limited to, those devised in [1–4]. Discontinuous Galerkin (DG) finite element 
methods (see [5–7] and references therein for reviews and detailed accounts of DG methods), which excel in the solution 
of propagation- and convection-dominated problems, have emerged as a powerful alternative for solving the SWE [8–15]. 
Conceptually similar to finite volume (FV) methods, DG methods inherently posses the property of being conservative on 
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the elemental level, a desirable property when coupling flow and transport equations. Unlike FV methods, high-order DG 
schemes on unstructured meshes can be constructed in a straightforward manner. Since they employ a piecewise discon-
tinuous approximation, DG methods are able to accommodate non-conforming meshes and allow the use of polynomial 
approximations of arbitrary order in each element, thus making them naturally well-suited for an hp-adaptive discretiza-
tion. In addition, the parallel implementation of DG schemes is highly scalable when used in conjunction with explicit time 
integration schemes [10].

While DG methods have numerous favorable properties, one major drawback of DG solutions in comparison to CG so-
lutions on a given mesh is the larger number of degrees of freedom, which directly implies greater computational costs. 
The performance study of DG and CG methods for the SWE in [16] demonstrates that, for linear elements on identical 
meshes, the cost per time step of the DG solution [8,9] is approximately four to five times higher than that of the CG so-
lution [2] (the latter solves the generalized wave continuity equation, a reformulated form of the SWE). Such a higher cost 
is not as alarming as it seems as the subsequent study [10] demonstrates that the DG method has comparable or higher 
efficiency in terms of obtaining a specified error level for a given computational cost and in terms of scalability on parallel 
machines. Most SWE solvers are first and second order accurate methods that are based on cell-averaged FV and linear 
finite elements. Indeed, for problems with smooth solutions, as demonstrated in [17,18], DG solutions offer a significant 
computational cost-per-accuracy when using high-order elements, i.e. elements with polynomial interpolants of degree p
greater than unity.

Developments made over the years, described in a number of papers [8–10,12,19], enable Dawson et al. [13] to apply 
the linear-element DG methods to a realistic modeling of hurricane-induced coastal and inland flooding. In [13], the results 
from linear-element DG methods are validated against the observation data and compared with the results from ADvanced 
Circulation (ADCIRC) code [2], a CG-based SWE solver used extensively in such applications. Solutions, computed with an 
identical high-resolution mesh and physical parameter values, from these two methods agree well in most of the domain; 
however, significant disagreement in the results is seen in inland areas, especially in meandering channels. In the channels, 
the surge level of the ADCIRC solution is in good agreement with the observation data. However, the surge level in the DG 
solution is damped compared to that of the ADCIRC solution and attenuates at a faster rate in the upstream direction. To a 
certain degree, this indicates that the DG solution is more diffusive in channels and hinders DG methods from becoming a 
viable tool in storm-surge applications.

In this work, motivated in part by an attempt to resolve the issue mentioned above, we investigate the effect of curved-
wall boundary treatments in DG solutions for SWE to open channel flow. As widely employed in CG calculations, DG 
calculations simply replace channel curved walls with a linear approximation (see for example [20,21]) and apply the 
no-normal flow condition on each straight segment in a straightforward manner. In gas dynamics, Bassi and Rebay [22]
demonstrate that DG solutions are highly sensitive to the accuracy of the representation of a solid curved wall, a boundary 
on which the no-normal flow condition is prescribed. Numerical results shown therein (also see [23]) demonstrate that the 
DG methods under p-refinement fail to yield a numerical solution that converges to the true solution when imposing the 
no-normal flow (or slip) condition on the linear approximation of the geometry, i.e. on a set of straight segments. Errors 
introduced by the geometric approximation appear to have a strong effect on the solution away from the boundary. Bassi 
and Rebay [22] show that this issue can be resolved by approximating the geometry using a polynomial of degree that 
is at least equal to the degree of the DG polynomial but not less than two, i.e. using at least iso-parametric elements for 
p > 1 and super-parametric elements for p = 1 for boundary-mesh elements. As shall be seen in detail in Section 5, simply 
prescribing the no-normal flow condition on the linear approximation of the solid curved wall of the channel leads to the 
presence of resolution-dependent artificial boundary layers and an over-prediction of the surface elevation on the upstream 
side. In this work, in addition to considering the curvilinear iso- and/or super-parametric elements, we employ a so-called 
curvature-boundary-condition approach, proposed originally for the Euler equations in [23], for the treatment of the no-
normal flow condition on solid curved walls. Such an approach adjusts a component enforcing the boundary condition in 
a DG formulation so that the physical no-normal flow conditions are better approximated on the straight-sided-element 
mesh.

The remainder of the paper is organized as follows. In Section 2, we provide a description of the two-dimensional SWE. 
A DG method for SWE described in [8,9] is briefly summarized in Section 3 (also, we briefly discuss considerations to achieve 
a so-called well-balanced property in high-order DG schemes in this section). Section 4 contains the detailed account of the 
two different approaches for treating the no-normal flow condition on a solid wall. In this study, a converging/diverging 
channel problem is used as a test problem and is described in Section 5.1. Section 5.2 presents results from the study on 
the flow problem. Conclusions are drawn in Section 6.

2. Governing equations

By assuming a hydrostatic pressure distribution and a uniform velocity profile in the vertical direction, flow in a channel 
can be modeled by two-dimensional shallow water equations (SWE), also known as the St. Venant equation. The SWE 
consist of the depth-averaged continuity equation and x- and y-momentum equations written here in a conservative form 
as:

∂q + ∇ · F(q) = s(q, x, t), (x, t) ∈ � × [0,∞) (1)

∂t
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Fig. 1. Schematic diagram of the free surface and bathymetry.

where q = (ζ, uH, v H)T is the vector of conserved variables, F(q) = (f1, f2), which depends on the conserved variables, 
denotes the flux with

f1 =
⎛
⎜⎝

uH

u2 H + 1

2
g(H2 − b2)

uv H

⎞
⎟⎠ and f2 =

⎛
⎜⎝

v H

uv H

v2 H + 1

2
g(H2 − b2)

⎞
⎟⎠ , (2)

and the forcing term s is given by

s =
(

0, gζ
∂b

∂x
− τbuH, gζ

∂b

∂ y
− τb v H

)T
, (3)

with

τb = C f

√
u2 + v2

H
(4)

The governing equations are augmented with appropriate initial and boundary conditions. In (2)–(4), ζ denotes the surface 
elevation measured positive upwards from a specified datum (see Fig. 1 for an illustration), b is the bathymetric depth 
measured positive downwards from the datum, H = ζ + b represents the total water column height, u and v are the depth-
averaged velocity in the x- and y-directions respectively, g is the magnitude of the gravitational acceleration, τb denotes 
the bottom-stress friction factor, and C f is the bottom drag coefficient. Here, τb is assumed to obey the quadratic friction 
law (4). Here, we consider the effect of the diffusion of momentum from turbulence negligible and the terms accounting 
for such an effect are omitted from the equations.

3. Discontinuous Galerkin finite element discretization

3.1. DG discretization

We consider a DG scheme for SWE described in [8,9,12,13,19]. Such a scheme, summarized briefly below, is based on 
the use of DG for the spatial discretization and the strong-stability-preserving Runge–Kutta (SSPRK) scheme for the time 
integration.

To discretize (1) in space using DG, the domain � is triangulated into a set of non-overlapping triangular elements 
denoted by Th . The solution q is then replaced by a discontinuous approximate solution qh . The approximate solution is 
selected so that, when restricted to the element K ∈ Th , it belongs to a finite dimensional space V (K ) = (P p(K ))3 where 
P p(K ) is a space of polynomials of degree at most p. More precisely, let �K = {φK

m(x)}m=1,...,N p be a basis of P p(K ), the 
solution on the element K is approximated by qh

∣∣
K = (qK

h,1, q
K
h,2, q

K
h,3) with

qK
h,i =

N p∑
m=1

q̃K
m,i(t)φ

K
m(x) (5)

where ̃qK
m,i(t) are time-dependent expansion coefficients of the ith-solution component associated with φK

m (x). The arising 
residual in each element is subsequently required to be orthogonal to the local approximation space V (K ), yielding the 
following semi-discrete weak formula∫

K

φK
m

∂qK
h,i

∂t
dx −

∫
K

∇φK
m · Fi(qh)dx +

∫
∂ K

φK
m F̂i · nds =

∫
K

φK
msi(qh)dx, ∀φK

m ∈ �K , i = 1,2,3 (6)

where n represents the outward-pointing unit normal vector on the element boundary ∂ K , Fi = (
(f1)i, (f2)i

)
denotes the 

ith-component of the flux term (e.g. F1 = (uH, v H)) and si represents the ith-component of the vector of forcing terms. The 
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so-called numerical flux ̂F is employed to resolve the flux F(qh) on the element boundary due to the approximation being 
discontinuous across the element boundary. The numerical fluxes depend on the traces of qh from both sides of the element 
interface, namely, (qin, qex). Here, we use qin to refer to the value of the solution when approaching a point x ∈ ∂ K from 
the interior of an element K and qex the value when approaching from the exterior (i.e. from a neighboring element sharing 
the edge ∂ K ) of the element K . It is noted that the numerical flux is the term in the DG formula that couples the solution 
from different elements and is crucial for the stability, convergence, and efficiency of the DG method [5,6]. The numerical 
flux ̂F · n = F(qin, qex; n) can be any locally Lipschitz-continuous, monotone flux that is consistent with the nonlinear flux 
F · n [24]. Unless otherwise indicated, the numerical results shown below are obtained from using the local Lax–Friedrichs 
flux (LLF)

F(qin,qex;n) = F(qin) + F(qex)

2
· n + 1

2
C(qin − qex)

where a constant C corresponding to the largest value of the absolute maximum eigenvalue of the normal flux Jacobian 
matrix, more precisely,

C = max
s∈[qin,qex]

∣∣∣∣λ
(

nx
∂f1

∂q

∣∣∣∣
s
+ ny

∂f2

∂q

∣∣∣∣
s

)∣∣∣∣ = max
s∈[(u,H)in,(u,H)ex]

[(
|n · u| + √

g H
) ∣∣∣

s

]
(7)

where λ(·) represents the eigenvalues of the matrix.
In realizing (6), we employ a Dubiner basis [25] on I = {(r, s) | r, s ≥ −1, r + s ≤ 0}, which is an orthogonal basis and 

has a dimension of Np = (p + 1)(p + 2)/2 for a given order p, in defining the test functions φK
i . More precisely, the test 

functions are given by

φK
i (x) = (φi ◦ ψ−1)(x), x ∈ K (8)

where φi denote the Dubiner basis functions and ψ : I → K maps the coordinates of the reference triangular element I to 
the physical triangular element K . The area and edge integrals are evaluated using a quadrature rule devised for integration 
over a triangle [26] and a classical one-dimensional Gauss quadrature, respectively. Note that an N p × Np matrix associated 
with the first term of (6), is known as an element mass matrix. Since the expansion coordinates from different elements 
appear only in the numerical flux terms, the global mass matrix associated with the time-derivative term is decoupled-block 
diagonal and therefore can be inverted in an elementwise fashion. The resulting system of ordinary differential equations 
is integrated in time using an explicit strong-stability-preserving Runge–Kutta (SSPRK) scheme [27,28] of order p + 1. The 
time-step size used in the calculation is selected based on a CFL-type condition

�t = 2

3
C min

x∈K ,∀K∈Th

(
hK

(|u| + √
g H)(p + 1)

)
(9)

where |u| ≡ √
u2 + v2, hK is a diameter of the element K , and C is a constant. In numerical calculations, we use the 

diameter of the largest circle inscribed in a triangle to represent the element size.

3.2. Element types

In this work, we consider straight-sided triangular elements as well as curved-edged triangular elements. For the 
straight-edged element, we use in (8) a standard linear affine mapping for ψ [29], more precisely,

ψ(r) =
3∑

i=1

Li(r)xK
i , L1 = − (r + s)

2
, L2 = (r + 1)

2
, and L3 = (1 + s)

2
(10)

where xK
i denotes a coordinate of the ith-vertex of the element and Li is a linear Lagrange interpolation basis function on I .

For the curved-edged triangular elements, the geometry of K is represented by a polynomial interpolation of degree p̃
on I , more precisely,

xK (r, s) = ψ(r) =
N∑

i=1

Li(r)xK
i (11)

where Li(r, s) are the two-dimensional Lagrange polynomial basis functions on I associated with the nodal points ri , 
{xK

i }i=1,N are the given points of the physical element K , and N = (̃p + 1)(̃p + 2)/2 (see Fig. 2 for an illustration). The 
Lagrange polynomial basis functions are unity only at their associated nodal point and zero at other nodal points, i.e. 
Li(r j) = δi, j , where δi, j is the Kronecker delta. Therefore, the above mapping is exact at the grid points xK

i . For ̃p = p, where 
p is the degree of polynomial used in the discretization, the mapping (11) is known as an iso-parametric interpolation, for 
p̃ > p a super-parametric interpolation, and ̃p < p a subparametric interpolation. Indeed, the mapping for the straight-edged 
element (10) corresponds to the case where p̃ = 1.
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Fig. 2. Schematic diagram of the iso-parametric mapping for ̃p = 3. I = {(r, s) | (r, s) ≤ −1, r + s ≤ 0} and K is the physical element. This example shows the 
case where the edge joining the vertices labeled with 2 and 3 is a curved edge.

Note that it is important to choose the nodal distribution {r i}, especially for high p̃, in a way that the interpolation 
does not suffer from the Runge phenomenon, i.e. pronounced oscillations occurring when using a high-order interpolation 
polynomial of the equidistant grids (see [7] for devising such a nodal set and for a systematic way of constructing the 
Lagrange polynomial basis). A mesh generator utilized in this work provides data for linear finite elements; therefore, 
information of the grid points {xi} for high-order curvilinear elements is not readily available. In this work, we obtain {xi}
from the strategy described in [7] which involves deforming the straight edge(s) and redistributing the interior nodes of 
the straight-edged elements (the grid points of the straight-edged element are determined by the mapping (10)) to avoid 
severe distortion of the grid points.

Note that the area integrals in (6) are evaluated by numerically integrating the equivalent transformed integrals in the 
(r, s) coordinates, more specifically,∫

K

f dx =
∫
I

f det( J )dr, J = ∂(x, y)

∂(r, s)
(12)

∫
K

f
∂ g

∂x
dx =

∫
I

f

(
∂r

∂x

∂ g

∂r
+ ∂s

∂x

∂ g

∂s

)
det( J )dr =

∫
I

f

(
∂ y

∂s

∂ g

∂r
− ∂ y

∂r

∂ g

∂s

)
dr (13)

where J denotes the Jacobian matrix and the derivatives in (x, y) and (r, s) are related through (∂/∂x, ∂/∂ y)T = J−T (∂/∂r,
∂/∂s)T . The edge integrals are evaluated in a similar manner. Note that the unit vector normal to the element edge is 
present in the edge integral term of the DG weak formula. The unit normal vector to the edge of the physical element can 
be calculated from the formula below

n̂ = (n̂x, n̂y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

J1
(∂ y/∂r,−∂x/∂r), on ∂ K1,

1

J2
(−∂ y/∂r + ∂ y/∂s, ∂x/∂r − ∂x/∂s), on ∂ K2,

1

J3
(−∂ y/∂s, ∂x/∂s), on ∂ K3

(14)

where J i is the factor normalizing the vector so that |n̂| = 1 and in fact it is the Jacobian for the mapping along the edge 
∂ Ki (i = 1, 2, 3) of a triangle. Note that the edge i is the edge connecting the vertices ith and (mod(i, 3) + 1)th (see Fig. 2
for illustration), where mod(, ) denotes the modulo operator. For the straight-sided elements, the mapping (10) has a con-
stant Jacobian. Since the Dubiner basis is orthogonal, the element mass matrix is diagonal in this case and therefore can be 
trivially inverted. Generally, the Jacobian of the mapping (11) is not a constant for p̃ > 1. As a consequence, the element 
mass matrix is no longer diagonal for the curvilinear elements and the non-constant Jacobian (and also a non-constant unit 
normal vector on the curved edge) dictates the need for using a more accurate quadrature rule for an accurate integra-
tion of the integral terms. Here, for the straight-edged elements, the area integrals are evaluated using a 2p-order accurate 
quadrature rule and the edge integrals are calculated using a p + 1-point one-dimensional Gauss quadrature. For curved-
edged elements, the quadrature rule integrating exactly polynomials of degree 2p + 2p̃ is used in the area integrals and the 
(p + p̃ + 1)-point 1-D Gauss quadrature is employed in the edge integrals. It is noted that the quadrature rules used here 
are selected such that they integrate the weak formula exactly at the still water state (ζh = const, (uH)h = 0) to ensure that 
the scheme preserves the solution of the lake-at-rest problem, i.e. the scheme is well-balanced.
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3.3. Remark on the well-balanced property

In non-flat bed problems, one concern of DG or FV methods that are based on the conservative form of the SWE involves 
their ability to preserved the lake-at-rest solution

u(x) = 0 and ζ = H(x) − b(x) = const (15)

in the time marching process. Numerical schemes preserving such a state are termed as well-balanced schemes [30,31]. To 
achieve the well-balanced property, numerical schemes are devised so that the gravity term cancel out the bed term for a 
given approximate solution of the state at rest solution. In this work, the well-balanced property is attained by following 
a treatment outlined in [18], which is suitable for the conforming-order and conforming-mesh discretization. In brief, such 
a treatment consists of (i) replacing the bathymetric depth b(x) with a piecewise continuous interpolant of the same degree 
with the DG polynomial and (ii) exact realization of the DG weak formula at the still-water state. For the steady state at 
rest solution ζh = const, (uH)h = 0, and Hh = ζh + bh , the former ensures that Hh − bh = const everywhere in the element 
and Hh is single-valued along the inter-element boundary. This leads to the following weak formula

∫
K

∂qh

∂t
vhdx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0∫
K

1

2
g H∗ ∂vh

∂x
dx −

∫
∂ K

1

2
g H∗vhds +

∫
K

gζh vh
∂bh

∂x
dx

∫
K

1

2
g H∗ ∂vh

∂ y
dx −

∫
∂ K

1

2
g H∗vhds +

∫
K

gζh vh
∂bh

∂ y
dx

⎞
⎟⎟⎟⎟⎟⎟⎠

, H∗ ≡ H2
h − b2

h (16)

where vh are the test functions. The integrand of each edge integral is a direct consequence of the conservative property 
of the numerical flux. By integrating the first term of the right hand side by-parts and using Hh = const + bh , it can be 
verified that the right-hand-side term vanishes, hence yielding the well-balanced property. The requirement (ii) ensures the 
cancellation of terms is also satisfied in the numerical calculation. A question that may arise naturally concerns whether 
the requirement (ii) can be achieved in the curvilinear-element case. It can be shown that, owing to (11) being polynomials, 
an integrand in each integral term of (16) is indeed either a polynomial in (r, s) or in a 1-D parametric variable. There-
fore, the DG weak formula at the still water state can be calculated exactly by utilizing sufficiently accurate quadratures. 
In Appendix A, we demonstrate, through a test problem, the well-balanced property of the DG scheme with curvilinear 
elements.

4. Implementation of no-normal flow boundary conditions

In this study, we consider open channel flow problems with solid curved walls. On the solid walls, we prescribe the 
no-normal flow boundary condition also known as the inviscid wall boundary conditions. This condition indicates there is 
no flow across the wall, i.e. the normal component of velocity vanishes at the wall

u · N = 0, (17)

where N denotes the unit outward vector normal to the physical boundary. Since grid generators typically generate meshes 
consisting of only straight-sided elements, the boundary of the computational domain is therefore a piecewise linear ap-
proximation of the physical domain (the approximate boundary is often unfortunately the only information available). The 
no-normal flow condition is then conventionally treated by simply specifying that the normal component of velocity is zero 
on straight-sided segments of the approximate boundary. This treatment is generally sufficient for finite volume methods 
and for continuous Galerkin finite element methods with linear elements in that the order of accuracy is not deteriorated 
by the piecewise linear representation of the boundary. As shall be seen below in Section 5.2, this is not sufficient for DG 
solution even in the linear element case. The issue can be circumvent by a technique that accounts for errors introduced by 
the geometric approximation or an approach that accurately represents the geometry.

Below, we first describe the conventional approach in imposing the no-normal flow condition in the DG scheme. Subse-
quently, we discuss the so-called curvature-boundary-condition (CBC) approach [23] for implementing the no-normal flow 
conditions on straight-sided element meshes and thereafter realization of (17) in the curvilinear element solution.

4.1. Conventional approach

In the conventional approach, one prescribes the condition

u · n = 0 (18)

on an element edge approximating the no-normal flow curved boundary where n is the unit vector normal to the element 
edge (see Fig. 3 for illustration). To implement this condition in the DG scheme (6), we use the values of the numerical 
fluxes that are a result of setting the fictitious exterior states at integration points as follows

(uH)ex · n = −(uH)in · n, (uH)ex · τ = (uH)in · τ , Hex = H in (19)
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Fig. 3. Straight-sided element with an edge approximating a curved boundary.

Fig. 4. Curvature-boundary-condition approach for two integration points.

where τ is the unit-tangential vector of the given edge (n = (nx, ny), n · τ = 0 and n × τ = k̂). The velocity of the exterior 
state given above is the reflection of the interior velocity with respect to τ . Note that this results in the exterior state with 
the following velocity components

uex =
(

n2
y − n2

x

)
uin − 2nxny v in, vex =

(
n2

x − n2
y

)
v in − 2nxnyuin (20)

It can be verified that the exterior data leads to F̂ · n with a vanishing component for the continuity equation (note that 
F̂ · n is calculated by passing (qin, qex; n) to a Riemann solver). This indicates that the condition (18) is weakly enforced.

4.2. Curvature-boundary-condition (CBC) approach

The CBC approach, devised by [23] for Euler equations, is based on the observation that when a computational boundary 
does not coincide with the physical boundary, imposing the no-normal flow through the physical boundary implies permit-
ting some flow to enter or leave the computational boundary. Therefore, this approach assumes no-normal flow through the 
physical boundary in the near vicinity of the surface and imposes at each integration point on the approximate boundary 
∂ K w the following condition

u · N = 0, x ∈ ∂ K w (21)

where N = (Nx, N y) is the unit normal to the physical boundary (see Fig. 4 for illustration).
By following [23], the CBC approach for realizing (21) in the DG scheme is carried out by determining the fictitious 

exterior state at an integration point from

(uH)ex · N = −(uH)in · N, (uH)ex · T = (uH)in · T , Hex = H in (22)

where T denotes the unit vector tangential to the physical boundary (T · N = 0 and T × N = k̂). The velocity of the exterior 
state given above is the reflection of the interior velocity with respect to T . The interior state, the fictitious exterior state, 
and the unit vector normal to the approximate boundary n are subsequently used in evaluating the numerical flux ̂F · n. It 
can be verified that, for non-matching N and n, the continuity-equation component of F̂ · n does not vanish; this implies 
that the CBC approach leads to non-conservation of mass in the computational domain.

Note that a procedure for approximating the vector N from a given straight-sided mesh is described in [23]. In this 
study, since the analytical expressions of the walls are available (see Section 5.1), we compute the unit normal vector N
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Fig. 5. Configuration of the converging–diverging channel problem.

directly from the analytical expression. Although not reported here in detail, from our numerical experiments with a channel 
problem with more complicated-geometry walls, we note that using a cubic spline interpolation to fit the boundary curve 
from a given mesh appears to yield a satisfactory approximate solution.

4.3. Curvilinear element

In the curvilinear element, the boundary condition on the solid curved wall is given by

u · n̂ = 0 (23)

where n̂ is the spatially-varying unit vector normal to the curved edge approximating the physical solid curved wall. The 
procedure, similar to that described in Section 4.1 (with the spatially-varying unit normal vector n̂), is sufficient to achieve 
the condition (23) in the approximate solutions. The unit normal vector at the (mapped) quadrature points on the element 
edge can be computed by using the formula (14).

5. Application of DG to flow in channels

5.1. Problem description

The converging/diverging channel test problem is illustrated in Fig. 5. The channel has flat bathymetry and is 6000 m 
long and has variable width which is 500 m wide at the eastern and western ends and 300 m wide at the narrowest part. 
The narrowest part is located at 2000 m from the western end. The profile of the northern and southern walls are given 
analytically by

yN(x) = YNW − zmaxsech (4(x − Xc)/Lm) and

yS(x) = YSW + zmaxsech (4(x − Xc)/Lm) ,
(24)

respectively, where Lm = 500, zmax = 100, Xc = 2000, YNW = 500 and YSW = 0. In numerical simulations, we use the quies-
cent state as the initial condition, more precisely,

uH = (0,0)T , ζ = 0, at t = 0.

The no-normal flow condition is prescribed on the northern and southern walls. The boundary conditions at the western 
and eastern ends are set to

(uH, v H) = (qw ,0) on (x = 0, y, t) and ζ = 0 on (x = 6000, y, t),

respectively, where qw is a constant unit-width discharge. These boundary conditions describe constant discharge of flow 
to an open ocean. A value of the unit-width discharge qw and the constant bathymetric depth b are chosen in a way that 
flow is sub-critical everywhere. The bottom drag coefficient C f is set to a constant value throughout the domain. Note that 
all numerical results reported below, unless otherwise stated, are for the problem with b(x, y) = 10 (m), qw = 5 (m2/s), 
g = 9.81 (m/s2) and C f = 0.0025.

Numerical solutions are computed on a sequence of refined meshes. Fig. 6 shows the coarsest mesh (h-mesh) and the 
two finer meshes (h/2- and h/4-meshes). Note that the h-mesh has approximately five to six elements across the channel 
width. In these meshes, the northern and southern walls are a piecewise linear approximation of the exact wall profile 
(24); they are more accurate as the resolution increases. We consider DG polynomials of orders ranging from p = 1 to 3. 
The (p + 1)th-order, (p + 2)-stage SSPRK is used in the time integration with the variable time step size �t adjusted based 
on criteria (9). We set the constant C in (9) to a small value, more precisely to 0.25, in order to keep the error from 
the temporal discretization small in comparison to the spatial discretization error. To avoid introducing sudden forcing in 
the simulations, the discharge boundary value is gradually introduced as qw r(t), where r(t) denotes a so-called ramping 
function; here, we employ a hyperbolic tangent ramping function r(t) = tanh(2t/Dr) with a ramping parameter Dr > 0 for 
this purpose. The value of Dr is set to 0.08 day in the calculations. The simulations are carried out until t f = 4 days is 
reached.
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Fig. 6. Computational meshes used in the numerical tests: (a) h-mesh, Nel = 656, (b) h/2-mesh, Nel = 2624, and (c) h/4-mesh, Nel = 10 496.

Fig. 7. Velocity magnitude |u| at t = 2 days from using the LLF DG scheme with p = 1 and the conventional implementation of the no-normal flow boundary 
condition. Solutions under h-refinement: (a) h-mesh; (b) h/4-mesh.

Fig. 8. Surface elevation ζ at t = 2 days obtained from using the LLF DG scheme with p = 1 and the conventional implementation of the no-normal flow 
boundary condition. Solutions under h-refinement: (a) h-mesh; (b) h/4-mesh.

5.2. Numerical results

5.2.1. Results from the conventional implementation of the no-normal flow boundary condition
We first report on the numerical results using the conventional approach for implementing the no-normal flow boundary 

conditions. The velocity magnitude |u| = √
u2 + v2 and the surface elevation ζ at t = 2 days obtained from using the LLF DG 

scheme with p = 1 on the h- and h/4 mesh are plotted in Fig. 7 and Fig. 8, respectively. Note that boundary layers can be 
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Fig. 9. Solution at t = 2 days from using the conventional implementation of the no-normal flow boundary condition. Velocity magnitude at the section 
x = 3000 (left) and x = 4000 (right) computed using DG schemes with p = 1 on meshes of different resolutions. A solid line depicts the data of the 
reference solution.

Fig. 10. Solution at t = 2 from using the conventional implementation of the no-normal flow boundary condition. Surface elevation along the section 
y = 250, ζ(x, y = 250) computed using DG schemes with p = 1 on meshes of different resolutions. A solid line depicts the data of the reference solution.

clearly observed in the velocity plots (Fig. 7). These types of boundary layers also appear in the previous works of [21] and 
[20] which use the straight-edged elements in their calculations. Such boundary layers emerge from the channel throat and 
persist far downstream. In Fig. 9, we plot |u(3000, y)| and |u(4000, y)|, the velocity magnitude at the cross section along 
x = 3000 and x = 4000, respectively. For comparison, we also plot in these figures results from the reference calculation 
which is computed by the iso-parametric element DG with p = 3 on a high-resolution mesh (the results of curvilinear 
element calculations will be discussed below in Sections 5.2.2 and 5.2.3). Notice that the thickness of the boundary layers 
decreases as the grid size decreases and it appears to be approximately one-grid size in width. These observations provide 
convincing evidence that the boundary layers appearing in the solution are in fact artificial.

The presence of boundary layers, as expected, has an unfavorable effect on the accuracy of the water surface elevation 
level. In this problem setup, the artificial boundary layers lead to an over-prediction of the surface elevation upstream. 
We plot in Fig. 10 the surface elevation along the channel’s horizontal centerline ζ(x, y = 250). From the surface elevation 
plots (see Figs. 8 and 10), it is evident that the level of surface elevation upstream of the channel throat obtained from 
the coarse-mesh solution is visibly higher than those from the solutions obtained on the finer meshes. The connection 
between the presence of the artificial boundary layers and over-prediction of the surface elevation level may be explained 
as follows. With the boundary layers, the downstream portion of the channel is effectively narrowed; this results in higher 
velocity away from the channel walls in such areas. For this test problem, a steady state solution is a balance of the 
pressure gradient, convection, and the bottom friction terms. It is obvious that the higher velocity magnitude implies a larger 
quadratic friction term and thus a higher gradient of the surface elevation; as a consequence, this leads to greater surface 
elevation on the upstream side. This can be easily seen in the one-dimensional case in which one has g ∂ H = −C f

|u|u

∂x H
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Fig. 11. Velocity magnitude |u| at t = 2 days from using the LLF DG scheme and the conventional implementation of the no-normal flow boundary condition. 
Solutions under p-refinement on h-mesh: (a) p = 2; (b) p = 3.

(ignoring the convection term for simplicity of explanation) at steady state; it can be easily checked that the gradient −g ∂ H
∂x

increases as u increases.
In the above discussion, the resolution of the computation is changed by refining the mesh sizes. The resolution can 

be also be refined by changing the order of DG polynomials, p, which yields great benefit for a problem with a smooth 
solution (see for example [17,18] for a performance study of high-order DG methods). Fig. 11 shows the plots of velocity 
magnitude at t = 2 days under p-refinement on the h-mesh. For the LLF DG scheme, the approximate solution from the 
high-order schemes (p > 1) contains visibly stronger, more complicated-structure boundary layers than that with p = 1
(see Figs. 11 and 7). Qualitatively, the solution appears to be increasingly poor as p increases. In fact, the LLF DG solution 
becomes unsteady for p = 3.

Although not discussed here in detail, when the upwind-type numerical fluxes such as the Roe flux and Harten–Lax–van 
Leer-Contact flux are used in the calculations, the artificial boundary layers, although still clearly visible, become noticeably 
weaker than those appearing in the solutions with the LLF flux shown above. In fact, when using the upwind-type fluxes, 
the velocity magnitude of the high-order scheme reaches steady state with decreasing thickness of the boundary layers 
as p increases. This indicates, as one might expect, an advantage of the upwind-type numerical flux over the LLF flux for 
channel flow applications.

5.2.2. Results from the CBC implementation and curvilinear elements
Below, we report the numerical results from using the CBC approach for implementing the no-normal flow boundary 

condition and from using curvilinear elements. In curvilinear-element calculations, the iso-parametric or super-parametric 
elements are used only along the curved walls of the channel. Unless otherwise specified, results reported below for the 
curvilinear element solution are obtained from the iso-parametric elements (̃p = p) for high-order elements (p > 1) and 
the super-parametric with p̃ = 2 for the linear elements. Indeed, numerical solutions from using the CBC approach and the 
curvilinear element are in qualitatively good agreement and virtually indistinguishable to the naked eyes when plotted. We 
therefore discuss below only the results from the CBC approach. Observations made below for the CBC approach are also 
what observed in the curvilinear-element solution. The close inspection of errors in these approaches is presented in the 
subsequently section (Section 5.2.3) which examines convergence rates.

Fig. 12 shows snap shots of the velocity magnitude at t = 2 days using the CBC approach in the LLF DG method with 
p = 1 on the h- and h/4-mesh. The velocity profiles plotted appear to visually contain no boundary layer. The plots in 
Fig. 13, which show the velocity magnitude at the cross section x = 3000 and x = 4000, exhibit no boundary layer in the
DG solution. The surface elevation at t = 2 days from the CBC approach and the linear-element DG are shown in Fig. 14; 
Fig. 15 plots the surface elevation along the channel horizontal centerline ζ(x, y = 250).

It is noted from these plots that the level of surface elevation upstream of the channel throat from the coarse-mesh 
calculations differ only slightly from the finer-mesh calculations. Indeed, in comparison to ζ obtained from the conventional 
no-normal flow implementation presented in the previous subsection (see Fig. 8 and Fig. 10), the coarse-mesh (h-mesh) 
solution of the CBC approach compares well with the fine-mesh (h/4-mesh) solution of the conventional no-normal flow 
implementation.

Next we examine the numerical results of the CBC approach when using the high-order DG elements (p > 1). Fig. 16
shows the velocity magnitude obtained from the high-order LLF DG scheme. Clearly, the solution improves qualitatively as 
the order p increases. No boundary layer is present in these high-order DG solutions. Note that, unlike in the conventional 
no-normal flow approach, the solution of the high-order LLF DG scheme with the CBC approach reaches steady state for all 
orders of p considered.
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Fig. 12. Velocity magnitude |u| at t = 2 days from using the LLF DG scheme with p = 1 and the CBC implementation for the no-normal flow boundary 
conditions. Solution under h-refinement: (a) h-mesh, (b) h/4-mesh.

Fig. 13. Solution at t = 2 days from using the CBC implementation of the no-normal flow boundary condition. Velocity magnitude at the section x = 3000
(left) and x = 4000 (right) computed using DG schemes with p = 1 on meshes of different resolutions. A solid line depicts the data of the reference solution.

Fig. 14. Surface elevation ζ at t = 2 days obtained from using the LLF DG scheme with p = 1 and the CBC implementation of no-normal flow boundary 
conditions. Solutions under h-refinement: (a) h-mesh; (b) h/4-mesh.
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Fig. 15. Solution at t = 2 days from using the CBC implementation of the no-normal flow boundary condition. Surface elevation along the section y = 250, 
ζ(x, y = 250) computed using DG schemes with p = 1 on meshes of different resolutions. A solid line depicts the data of the reference solution.

Fig. 16. Velocity magnitude |u| at t = 2 days obtained from using the LLF flux and the CBC approach for no-normal flow boundary conditions. Results are 
solved on h-mesh with (a) p = 2, and (b) p = 3.

5.2.3. Numerical convergence
Since this problem has no analytical solution, we use an isoparametric-element solution obtained on the h/8-mesh 

(note that the h/4-mesh is a de-refinement of the h/8 mesh) and p = 3 as a reference solution for computing errors in 
the solution. Errors, measured in the L2-norm, in the water level ζh and the x-directed momentum component (uH)h are 
plotted in Fig. 17 and in Fig. 18, respectively. In these figures, the errors are plotted against the discretization resolution in 
the log–log scale. Here, 

√
Np Nel , where Np = (p +1)(p +2)/2 and Nel is the number of elements in the computational mesh, 

is used as an estimate of an inversion of the discretization grid size. The errors in the curvilinear-element DG solutions are 
depicted with the solid lines. The dashed lines show the errors in the DG solution with the CBC approach. We also include in 
the plots of the errors in the DG solution using the conventional no-normal flow implementation; the dotted lines, unfilled 
circles, and unfilled square show errors in the solution from using the linear, quadratic, and cubic elements, respectively. 
The results from both p- and h-refinement are included these figures (the value of p is placed to the right of each curve). 
Clearly, the level of errors in the solution using the conventional approach is very poor in comparison to the other two 
approaches; in addition, this approach fails to converge in the p-refinement, i.e. when varying p while holding the mesh 
resolution unchanged. It can be observed that the approximate solution becomes more accurate as the finer meshes are 
used in the calculation, i.e. as the mesh size decreases. In addition, the curvilinear-element DG solution yields significantly 
more accurate solution for a given discretization grid side as the high-order elements are used, i.e. as p increases. In the 
CBC approach, the benefit of this type from p-refinement can be clearly noticed as p increases from 1 to 2; however, very 
little benefit is observed from increasing p from 2 to 3.

Table 1 reports the overall rate of convergence of the approximate solution. Note that, theoretical estimates in [32] show 
that the LLF DG scheme for scalar conservation laws has the optimal rates of convergence of p +1/2. The curvilinear-element 
DG solution exhibits a numerical convergence of rate between O (hp+1/2) and O (hp+1). For p = 1, and 2, the DG method 
with the CBC approach yields the approximation solution that converges at the rate of p + 1/2 to p + 1. However, for 
p = 3, this approach converges at a rate of only approximately 2.1, significant lower than the expected order. Note that 
although factoring in the effect of the curved boundary to determine the exterior state so that the resulting numerical 
flux yields a better approximation of the physical no-normal condition, the CBC approach is still based on the use of an 
approximate boundary (which is a linearly truncated version of the physical boundary) in the calculation. Intuitively, errors 
introduced by not matching the computational domain to the physical domain could increasingly become a source of major 
error as p increases. It is thus logical for the CBC no-normal flow approach to not perform in an ideal manner in the 
p-refinement.
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Fig. 17. L2-errors in ζh as a function of (1/h) ∼ √
N p Nel . Solid and dashed lines plot errors in the curvilinear element DG solution and in the DG solution 

with the CBC approach, respectively. A dotted line, unfilled squares, and unfilled circles show errors in the linear, quadratic, and cubic-element DG solution 
with conventional no-normal flow implementation, respectively. Symbols indicate meshes used for the calculation: � h-mesh, � h/2-mesh, � h/4-mesh, 
+ h/8-mesh.

Fig. 18. L2-errors in (uH)h as a function of (1/h) ∼ √
N p Nel . Solid and dashed lines plot errors in the curvilinear element DG solution and in the DG solution 

with the CBC approach, respectively. A dotted line, unfilled squares, unfilled circles show errors in the linear, quadratic, and cubic-element DG solution 
with conventional no-normal flow implementation, respectively. Symbols indicate meshes used for the calculation: � h-mesh, � h/2-mesh, � h/4-mesh, 
+ h/8-mesh.

Table 1
Overall numerical rate of convergence in the surface water level ζh and the x-directed 
momentum component (uH)h .

p ζ uH

CBC Curv. element CBC Curv. element

1 2.102 2.159 2.215 2.266
2 2.358 2.766 2.680 2.856
3 2.105 3.890 2.166 3.456

6. Conclusions

In this work, we examine DG solutions of flow in channels governed by SWE with different treatments of the no-normal 
flow boundary condition at solid curved walls. Numerical investigations provide clear evidence that, as observed in gas dy-
namics, imposing the no-normal flow boundary on the linear approximation of the solid curved wall can lead to unfavorable 
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Fig. 19. Profile of the bed (−b(x)) used in the well-balanced test.

results. In our test setup, this conventional approach produces artificial boundary layers of one-grid-size thickness and over-
prediction of the water surface level upstream of the channel (in practical applications of storm surge, this will increase the 
computed stage-flow relationships for a channel and artificially over-dampen a hurricane surge propagating up the channel). 
A proper treatment of no-normal flow boundary conditions on the curved wall is crucial for achieving accurate DG solutions 
to the SWE. Such a treatment is essential to achieve realistic coarse grid solutions and is especially critical for obtaining a 
high-order solution from the high-order DG schemes for flow in channels. In this work, we employ both an approach that 
accounts for errors introduced by the geometric approximation and an approach that accurately represents the geometry. 
The former, which is done here through the use of the CBC approach, offers a simple solution in an existing computer code 
built for straighted-edge elements. In our test case, this approach performs well for linear and quadratic elements. However, 
it offers little to no benefit in terms of accuracy as p is further increased. The reason for this may stem from errors intro-
duced by not matching the computational boundary to the physical boundary in the CBC approach, although evidently less 
than the conventional no-normal flow approach, may increasingly become the major source of errors as p increases and 
lead to sub-optimal convergence. Here, an approach that accurately represents the geometry is implemented through the 
use of curvilinear elements. This approach yields highly desirable numerical accuracy in that the solution converges at the 
expected rate. The curvilinear element, however, is more computationally expensive than the straighted-edge elements.
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Appendix A. Well-balanced test

In this section, we use the test problem below to demonstrate the well-balanced property of the DG scheme with the 
treatment of the bed term discussed in Section 3.3. Here, we present only the case that involves the curvilinear elements. 
We consider the lake-at-rest problem defined on the domain described in Section 5.1 with the bathymetric depth

b(x, y) =
⎧⎨
⎩ 5 − sech

(
x − 2000

200

)
for x ≤ 2000

4 for x > 2000
(25)

The profile of the bed is depicted in Fig. 19. The no-normal flow boundary conditions are prescribed at the domain bound-
aries and the state at rest as the initial condition

ζ(x, t = 0) = ζ0, uH = 0 (26)

with ζ0 is set to 1/4 in the numerical calculations. The numerical solution is computed on the h/2-mesh shown in Fig. 6
and curvilinear elements are used along the curved-wall boundaries. For high-order elements (p ≥ 2), the iso-parametric 
elements (̃p = p) are used in representing the geometry and for the linear elements (p = 1) the super-parametric elements 
p̃ = 2 are employed. The time integration is performed until t = 172 800 (2 days) is reached. In this study, the bottom 
friction terms are included in the numerical test (note that the bottom friction terms vanish when u = 0). Table 2 tabulates 
the L∞ error in the approximate water surface level and in the x-, y-directed discharge. It can be observed from these 
results that the scheme processes the well-balanced property.
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Table 2
Well-balanced test with curvilinear elements. L∞-errors in ζh and (uH)h at 
t = 172 800.

(p, p̃) ‖ζh − ζ0‖∞ ‖(uH)h‖∞ ‖(v H)h‖∞
(1,2) 1.59e−13 4.95e−11 3.28e−11
(2,2) 1.16e−13 1.61e−10 1.19e−10
(3,3) 6.52e−12 2.91e−08 1.89e−08
(4,4) 5.79e−12 4.78e−08 7.32e−08
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