
OceanMesh2D: User guide

Precise distance-based two-dimensional automated mesh generation

toolbox intended for coastal ocean/shallow water flow models

Authors: Keith J. Roberts and William J. Pringle

University of Notre Dame, United States
Computational Hydraulics Lab

28 February 2018

1

Contents

1 Introduction 3
1.1 Foreword . 3

2 Things everyone should know 3
2.1 Installation . 4
2.2 Mesh . 4
2.3 Domain . 5
2.4 Digital Elevation Model . 5
2.5 Boundary . 6

3 Edgelength functions 6
3.1 Distance . 6
3.2 Wavelength . 7
3.3 Slope . 8
3.4 Channels (ch) . 9

4 Mesh stability and validity 9
4.1 Grading . 9
4.2 CFL limiting . 10
4.3 Ensuring Mesh Validity . 11

5 Example of use 13
5.1 Around the world . 15
5.2 High fidelity . 17
5.3 Large domains . 19

6 Post-processing functions 21
6.1 msh.calcCFL . 21
6.2 msh.checkTimestep . 21
6.3 msh.renum . 21
6.4 msh.makeNs . 21
6.5 + operator . 21
6.6 Example of workflow . 22

7 Appendix: Class Prototypes 24
7.1 edgefx . 24
7.2 geodata . 24
7.3 msh . 24
7.4 mshgen . 24

2

1 Introduction

1.1 Foreword

OceanMesh2D is a set of MATLAB scripts to assemble and post-process two-dimensional (2D) trian-
gular meshes used in finite element numerical simulations. It is designed with coastal ocean models
in mind, although it can mesh any 2D region bounded by a polygon. It can be used to build meshes
of varying size (up to 10 million vertices or so) based on user-defined parameters to edgelength func-
tions that control how the resolution is distributed in space. The meshes created with the software
are nearly reproducible since they are parameterizable and can be assembled quickly on a personal
computer on the order of minutes.

The mesh generation is accomplished by using documented [1] and original improvements to the
seminal force equilibrium algorithm, DistMesh2D [2]. In this software, the mesh generator is a
standalone class that only requires the specification of a polygonal region along with a target resol-
ution (edgelength), much like DistMesh2D. However, in contrast to DistMesh2D the mesh generator
class has been tuned to converge quickly for complex polygonal regions and highly heterogeneous
edgelength functions typically associated with meshes for geophysical shallow water flows.

In automated mesh generation, the edgelength function determines how resolution is distributed
in space. While the topic of mesh generation is rich and well-studied, research on the impact of
mesh resolution on the shallow-water equations has received much less focus. In this document,
we describe some of the edgelength functions that were implemented to facilitate capturing shallow
water flow both efficiently and accurately.

2 Things everyone should know

OceanMesh2D uses an object orientated programming (OOP) style to make the mesh generation
process simple through abstraction and overloading. These properties reduce the complexity of
function calls and the number of lines the user needs to type.

There are four classes: geodata, msh, meshgen, and edgefx. All the classes accept name/value
pair arguments and are created by typing the class name (e.g., geodata()), which generates an
object of the type class. Help documentation can be accessed by typing for example:

help geodata

And all the methods of each class can be inspected by typing

methods(‘classname’)

Here we list some of the basic requirements used for this software.

• MATLAB (tested on versions post 2015a up to 2017b) plus the following toolboxes:

– paid: mapping toolbox

3

– free: m map toolbox v1.4 (https://www.eoas.ubc.ca/~rich/map.html)

– free: ann wrapper (http://www.wisdom.weizmann.ac.il/~bagon/matlab.html)

– free: MEX compiler

• optional: digital elevation model (DEM).

• optional: a shapefile representing the boundary of the area you want to mesh.

The m map and ann wrapper packages must be placed inside the utilities folder.

2.1 Installation

Unzip the contents sent to you. Navigate to the ‘OceanMesh2D/utilities’ directory. Download
and place the m map and ann wrapper packages in this directory. Still within the utilities dir-
ectory, the user must execute ‘ann class compile.m’. This script compiles some of the MEX files
associated with the ann wrapper package used throughout the code. Be sure to add the ‘Ocean-
Mesh2D/utilities’ and ‘OceanMesh2D/datasets’ directories and sub-directories to your MATLAB
path, e.g., ‘addpath(genpath(’utilities/’))’.

2.2 Mesh

A mesh in our context is an unstructured triangulation composed of nt triangles and np vertices.
More specifically, a mesh is a set of triangles t from tessellating np vertices p that lie in IR2. In
OceanMesh2D we create the well-known Delaunay triangulation of the point set p and then refine
this triangulation iteratively until we reach a desired quality or exhaust a number of iterations.
Each element or triangle of the mesh has three vertices making it C1 continuous in the Continuous
Galerkin Finite Element framework. A valid mesh for use with the Continuous Glakerin Finite
Element framework must have the following properties:

1. p are arranged in an order (i.e., counter-clockwise) in each element.

2. There are no overlapping t (i.e., no elements intersect in space).

3. No disjoint or hanging pi (i.e., vertices are always members of t) and p are always shared
between neighboring t. The same holds for ti.

4. The boundary of the mesh must have only two traversal paths (i.e., one can travel from any
starting point on it and move either clockwise or counter clockwise around the boundary and
eventually reach the starting point).

However, a valid mesh is not necessarily a high quality one. We define a high quality mesh as a
triangulation with the following properties:

1. All t are nearly equilateral

2. The edges of t do not vary more than g percent between their connected edges.

We use the following formula to quantify how equilateral the mesh is [3]:

qE = 4
√

3AE

(
3∑

i=1

(λ2E)i

)−1

(1)

4

https://www.eoas.ubc.ca/~rich/map.html
http://www.wisdom.weizmann.ac.il/~bagon/matlab.html

where AE is the area of the element and (λE)i is the length of the ith edge of the element. qE
= 1 corresponds to an equilateral triangular element and qE = 0 indicates a completely degener-
ated element. The consideration of what constitutes a high quality mesh rests on the statistical
distribution of element quality, qE . Generally a mesh with qE − 3σqE > 0.75 (where the over-line
and σ denote the mean and standard deviation respectively) is considered high quality and can be
simulated without any changes to the mesh topology.

A restriction on the smoothness or the grade g of the triangulation is applied. Sharp gradients
in triangular resolution may produce large numerical errors in these regions. Smooth transitions
constrain the size of the error so that the solution does not noticeably degrade. We generally find
that setting 0.2 < g < 0.3 produces reasonable solutions.

An empty mesh for use within OceanMesh2D can be constructed by typing: mesh = msh() or,
by populating it with a ADCIRC compliant fort.14 file,
mesh = msh(‘fname.14’).

2.3 Domain

The region to be meshed is identified using a rectangular box referred to as a bounding box (bbox)
with a constant grid spacing h0. The variable h0 represents the minimum grid spacing or edgelength
that is desired in your mesh.

bbox = [min(x) max(x); min(y) max(y)]

where x and y are in horizontal WGS84 coordinates.

2.4 Digital Elevation Model

A digital elevation model (DEM) is a structured grid that contains x,y,z data at each grid point. Here
the coordinate z represents the height in meters above a geodetic datum (e.g., mean sea level/MSL).
A topobathy DEM is one that covers both overland (≥ MSL) and seamlessly transitions underwater
(≤MSL) and a bathymetric DEM is one that has coverage for points ≤ MSL.

For some edgefunctions (explained below), a bathymetric DEM is required (e.g., wavelength, slope,
and channels). In these cases, we require the DEM to be in the WGS84 horizontal datum, have
a vertical unit of meters, and be in the NetCDF file format. The correct NetCDF format for our
software can be achieved by typing (regardless if the file is already in NetCDF format):

gdal convert -of NetCDF in filename out filename.nc

This results in the variables inside the Netcdf being compliant and sized correctly for it to work
with the software. The DEM can be passed to the same geodata class used to process the shapefiles
above, such as:

data = geodata(‘DEM’,filename dem.nc)

And to visualize it:

5

plot(data,‘dem’)

It is strongly encouraged to inspect your DEM before building any meshes and thoroughly un-
derstand its shortcomings as these deficiencies can significantly affect the mesh generation process.

2.5 Boundary

Features in OceanMesh2D are represented using polygons. A polygon is a 2-tuple of x,y coordinates
with features separated by a NaN. For use within the ocean modeling framework, the boundary
provided to OceanMesh2D can be a shapefile or a NaN-delimited vector.

One simple way to obtain a shapefile of the coastline for use within OceanMesh is to perform
the following operation on your DEM dataset:

gdal contour -fl 0.0 DEM name of shapefile.shp

Once the shapefile is obtained, it can be prepared for later use within other OceanMesh2D functions
by constructing a geodata class. For instance, the user passes the filename of the shapefile, the
minimum resolution/edgelength to the geodata class constructor, and bbox:

data = geodata(‘shp’,filename.shp,‘bbox’,bbox,‘h0’,h0)

The shapefile can then be visualized by typing:

plot(data,‘shp’)

Note how MATLAB’s OOP style has allowed us to overload the plot command for both shapefiles
and DEMs; this style is used throughout the software.

3 Edgelength functions

Here we discuss how the mesh resolution is distributed in 2D space. All edgelength functions are
encapsulated within the edgefx class. After constructing the edgefx class with arguments, the
minimum of all edgelength functions is computed to form the final edgelength function.

In this user guide, an edgelength function is denoted by the variable fh followed with a sub-subscript
denoting the type of edgelength function. All edgelength functions are WSG84 decimal degrees.

3.1 Distance

A distance edge function is used to distribute mesh resolution proportional to its distance from a
boundary such as a coastline. For example, in 2D coastal ocean modeling, typically higher resolution
is needed nearshore since the spatial scale of nearshore features tends to become smaller and more
geometrically complex than in offshore. Additionally, properties and man-made structures reside
nearshore that are impacted from storm surge and are thus of interest to capture correctly in the
mesh. Currently, two types of distance functions are available, as described below.

6

1. Linear distance function (dis):
The simplest distance function available is a linear function of distance from the nearest bound-
ary point:

fhdis
= h0 + αdd (2)

where fhdis is the resolution in space, h0 is the minimum resolution, αd is the percent change
of resolution per decimal degree, and d is the distance transform or the distance to the nearest
boundary point in IR2. To enable this option, enter the following command:

fh = edgefx(‘geodata’,geodata obj,‘dis’,αd)

Where it is assumed you have already created a geodata class with a shapefile and then pass
it to the edgefx class constructor. This function is mutually exclusive with fhfs

2. Feature Size (fs):
The feature size function places resolution according to how wide a 2D feature is. The user
controls the number of elements R that are used to resolve a feature of arbitrary width W .
This function is mutually exclusive with fhdis

.

fhfs
=
W

R
(3)

The width of the feature is estimated by calculating the gradient of the distance transform
and finding points where this gradient is ≤ 0.90 and d ≤ h0 (see [1] for more details). These
points are referred to as the approximate medial axis and the distance from the medial axis
points to the nearest boundary points are dMA. Then equation (3) becomes

fhfs
=

2(dMA + d)

R
(4)

where d is the distance transform to the boundary as was described in the linear distance
function. To enable this option, enter the follow command with a geodata object.

fh = edgefx(‘geodata’,geodata obj,‘fs’,R)

3.2 Wavelength

Numerically speaking, the pertinent wave modeled in the finite element framework should be resolved
by a minimum number of elements. In 2D coastal ocean modeling, we often seek to resolve model
the dominant tidal species (e.g., M2, K1, etc.) accurately to avoid aliasing the tidal wave in space [4].

For instance, in order to represent the most energetic semi-diurnal component of the tide in a
mesh (e.g., M2), we can estimate its wavelength using shallow water wave theory to ensure a certain
number of elements per M2 tidal wavelength:

fhwl
=
λM2

αwl
(5)

fhwl
=
TM2

αwl

√
gH (6)

7

where λM2 and TM2 are the wavelength and period (12.42 hours) of the M2 tidal wave, H the total
water column depth, and αw the user specified number of elements to resolve the wavelength. We
assume that H is approximately equal to the bathymetric depth h, which is a good assumption in
the deep ocean. If the M2 wavelength is sufficiently captured, the diurnal species will also be suffi-
ciently resolved since their wavelengths are approximately twice as large as the M2. The wavelength
function is converted to decimal degrees by assuming a latitude of 0◦. To enable this option:

fh = edgefx(‘geodata’,geodata obj,‘wl’,αwl)

3.3 Slope

Greater resolution may required in order to resolve bathymetric features such as the shelf break
and slope, submarine ridges and troughs that are indicated by significant topographic gradients.
The features may be important for coastal ocean models to capture dissipative (in particular due to
internal tides in the deep ocean) and reflective effects (due to the shelf break) on tides, surge and
trapped shelf waves. The scaling of the slope parameter, commonly called the topographic length
scale, is usually represented by the following:

fhslp
=

2π

αslp

h

|∇h∗|
(7)

where 2π/αslp is the number of elements that resolve the topographic slope, h is the bathymetric
depth, and ∇h∗ is the gradient of the filtered bathymetry evaluated on a structured grid of resolution
h0. The 2π factor is a convention introduced by [5] so that αslp can be set to a value equal or similar
to αwl, e.g. around 20-30.

Typically the gradient of the original bathymetric field can be rather noisy introducing a large
number of nodes despite the fact that small features likely have marginal effects on shallow wa-
ter flow. Thus a low-pass or bandpass filter (filt2 obtained at https://www.mathworks.com/

matlabcentral/fileexchange/61003-filt2-2d-geospatial-data-filter, with dependencies on
the image processing toolbox removed) is applied to the bathymetry before taking the gradients.
The decision of the bandpass filter lengths [fllow, f lhigh] can be defined by the user. Alternatively,
a low-pass filter length is automatically deduced based on the λM2 at a depth of 100 m and the αslp

parameter:

fllow =
λM2(h = 100)

αslp
, f lhigh = 0 (8)

this has the physical meaning that features larger than a 1/αslp fraction of the M2 wavelength (based
on the 100 m depth level) should be captured, e.g. fllow = 46.7 km for αslp = 30. Furthermore,
fhslp

can become unnecessarily large nearshore and override the feature size variations, thus we set
fhslp

= 0 in depths less than 100 m. The decision to cutoff the slope parameter and deduce the
filter length at 100 m depth is driven by the expectation that shelf breaks begin just beyond 100 m
and any pertinent topographic slope-based features shallower than this should be captured by the
channel finder algorithm in §3.4. The slope edgelength function is enabled by typing:

hh = edgefx(‘geodata’,geodata obj,‘slp’,αslp,‘fl’,[fllow, f lhigh])

Note: ‘fl’ may be omitted in which case the automatic low-pass filter described above is applied;
[fllow, f lhigh] is a (n x 2) array for n different bandpass filter lengths; set flhigh = 0 to apply only
a low-pass filter; a high-pass filter is not recommended.

8

https://www.mathworks.com/matlabcentral/fileexchange/61003-filt2-2d-geospatial-data-filter
https://www.mathworks.com/matlabcentral/fileexchange/61003-filt2-2d-geospatial-data-filter

3.4 Channels (ch)

There are often both man-made dredged channels and submerged river basins (e.g. Hudson river
valley) in the nearshore region that can alter the near shore circulation. For instance, in submerged
channels in the ocean, the bottom friction is locally reduced due to their deeper depth relative to
neighboring regions. This acts to enhance the flow along the centerline of the channel. Overland,
there are channel networks where rivers drain into the ocean basins. The overland channel networks
are typically the first locations where flooding occurs during storm surge events. Considering this,
it is useful to resolve overland and submerged channels in the mesh in order to simulate the cor-
rect movement of water and adequately resolve the overland regions were flooding would likely occur.

The details of the channel finder are beyond the scope of the user guide but a curious reader
can read OUR PAPER CITATION on it. Once the algorithm has calculated the channel network,
it creates a circular region around each channel point and assigns a percentile of the slope edge
function in this region. The circular region is determined by assuming the channel has a v-shaped
profile with the bathymetric depth at that particular channel’s point and an angle of reslope of 60o.

Essentially, we are incorporating channels into the mesh that have steep banks with higher res-
olution. This reduces the number of falsely identified channels if one were to solely use an upslope
area threshold to identify them. Since we are using the slope edge function to determine mesh
resolution here, the only argument the user needs to specify is αch, which is the percentile of the
neighboring slope edge function to be used to place resolution along the channel points. The user
can enable the channel function by typing::

hh = edgefx(‘geodata’,geodata obj,‘ch’,αch)

4 Mesh stability and validity

4.1 Grading

The final stage of the development of an edgelength function fh involves ensuring a size smoothness
limit, g such that for any two points xi,xj , the local increase in size is bounded such as:

fh(xj) ≤ fh(xi) + αg||xi − xj || (9)

A smoothness criteria is necessary to produce a mesh that can simulate physical processes with a
practical time step as sharp gradients in mesh resolution typically lead to highly skewed angles that
result in poor numerical performance. We adopt the method to smooth fh originally proposed by [6]
and later adapted by [7]. We have further adapted this algorithm for support on structured grids.
Details of the algorithm are not relevant for a user guide and curious readers should see [6, 7].

A smoother edgelength function is congruent with a higher overall element quality but with more
triangles in the mesh. Generally, setting 0.2 ≤ αg ≤ 0.3 produces good results. The user can control
the grade of the mesh by passing an option to the edgefx class.

fh = edgefx(varargin,‘g’,αg)

9

4.2 CFL limiting

Many numerical models for shallow water flow are limited by the Courant-Friedrichs-Lewy (CFL)
condition associated with explicit temporal integration schemes that are often employed. The Cour-
ant number, Cr is used to measure the stability in terms of the CFL condition [8]:

Cr =
(|u|+

√
gH)∆t

fE
(10)

where |u| ≡
√
u2 + v2 is the velocity magnitude, g is the acceleration due to gravity, H is the total

water depth, ∆t is the time step, and fE is the element size, calculated as the diameter of the
largest circle inscribed in the triangular element. The CFL condition requires that Cr < 1. Stricter
conditions may also be relevant for some numerical models and due to nonlinearities in the governing
equations [9].

It is beneficial to build the mesh with the CFL condition in mind so that a target time step
may be used without fear of numerical instability. Unfortunately, |u| and H are not known a priori.
However, the still water depth, h is known from the DEM used to build the mesh. h is a suitable
proxy for H throughout most of the ocean, and |u| may be estimated from linear long theory:

|u| = η

√
g

h
(11)

where η is the free surface elevation. η is on the order of ∼ 1 m in most of the ocean but may
reach close to ∼ 10 m in coastal regions with very large tidal ranges such as the Bay of Fundy, King
Sound, and Hudson Bay. Setting η = 2 m is probably suitable for most regions, hence this is the
default value used in OceanMesh2D. Finally, we set fh = fE and rearrange (10) to find the minimum
edgelength, fh possible for a given h and ∆t, based on some value of Cr ≤ 1 (such as Cr = 0.8,
which provides a buffer to allow for the effects of the nonlinearities).

The above approximations should work well in most of the ocean including nearshore when
building meshes for shallow water phenomenon such as tides and surge. However, they will break
down overland and when η ∼ h, such that the linear long wave theory will not be relevant (so h
cannot be used as a proxy for H and (11) is no longer useful). We handle this issue in OceanMesh2D
by simply setting H = η and |u| =

√
gH for all h < η (η is 2 m by default). This assumes that the

flow velocity is critical (Fr = 1, where Fr is the Froude number).
Finally, the software can automatically select a suitable value of ∆t for CFL limiting based on

the nearshore conditions. In other words, ∆t that satisfies (10) at the coast is used to limit fh
everywhere else. This is determined by:

∆t = min

[
fhd

Cr

|u|+
√
gH

]
(12)

where fhd
is either fhfs

or fhdis
, depending on which is invoked. fhd

is the major control of resolu-
tion at the coast so using (12) to determine ∆t will preserve the resolution here.

To enable the automatic CFL limiting option the user simply passes a name/value pair of ‘dt’,0
to the edgefx class

fh = edgefx(varargin,‘dt’,0)

If the user wishes to specify a dt rather than use automatically detect it, then change the value of
dt in the call above.

10

4.3 Ensuring Mesh Validity

Mesh validity is checked after it has been created using the msh.build routine. The properties of
a valid mesh were described in §2.2. Properties numbered 1 to 3, referring to ensuring no disjoint
or hanging nodes and the correct ordering of nodes, is handled with the fixmesh function that was
provided with the Distmesh2D program. Property number 4, referring to ensuring that there are
only two traversal paths along the mesh boundary, is handled through the fix bad edges and mesh

function described below.
The fix bad edges and mesh routine alternates between checking and deleting exterior and in-

terior portions of the graph (elements) exhaustively until convergence is obtained, defined as: having
no nodes connected to more than two boundary edges (all the boundary nodes are traversable along
a single mesh boundary pathway). The fixmesh function is called by fix bad edges and mesh

routinely to ensure no disjoint or hanging nodes after elements are deleted at each step. The func-
tion begins by calling the delete exterior elements sub-function to delete the exterior portion of
the graph. After this the boundary edge requirements are checked. If convergence is not obtained
the delete interior elements sub-function is called. This process is repeated until convergence.

The delete exterior elements sub-function finds small disjoint portions of the graph and re-
moves them using a “spider-search” algorithm, or more precisely, a breadth-first search (BFS). The
BFS starts at a random element of the graph, finds the neighboring elements and flags each of these

Figure 1: Red dots indicate the elements that are deleted on the first pass of the
delete exterior elements sub-function contained within the fix bad edges and mesh routine.
As shown on the blown-up graphic, Lake Pontchartrain in New Orleans is disconnected from the
main grid and represents a very small portion of the overall graph (the mesh spans the entire U.S.
East and Gulf Coasts), so it is deleted.

11

elements that they have been checked. The same action will then be conducted on the each of the
neighboring elements just flagged. This process will continue until there are no previously checked
(flagged) elements remaining that are neighboring any of the elements in this disjoint portion of
the graph. The individual disjoint portions are removed if their composition represents less than a
specified fraction, µco of the total graph, which is set to be 0.01 (1%) by default. The µco fraction
can be used to control whether certain bays or seas that are separated from the major ocean portion
of the graph are deleted or not. Thus, a user may need to set µco as a parameter in the meshgen

class depending on the requirements and conditions:

msh = meshgen(varargin,‘dj cutoff’,µco)

An example of the disjoint portions to be removed on the first pass of delete exterior elements

is shown in Figure 1. It is acknowledged that in this case the connectivity through to the lake from the
sea is missing and ideally the addition of elements may be desired. Alas, it is far more cumbersome
to add elements than delete them. Besides, this is an issue related to the minimum resolution (h0)
being insufficient to resolve the channel, so the user can decrease h0 and re-mesh if required.

The delete interior elements sub-function deletes elements that are within the interior of
the mesh that are found to be connected to more than two boundary edges. A classic example
of this is illustrated in Figure 2 along the Pensacola Beach barrier island. Because the barrier

Figure 2: Red dots indicate the elements that are deleted on the first pass of the
delete interior elements sub-function contained within the fix bad edges and mesh routine.
As shown on the blown-up graphic, a number of nodes along the thin Pensacola Beach barrier island
are connected to more than two boundary edges. In order to deal with this, elements connected to
the node must be deleted; for example the element directed at by the arrow.

12

island is thin compared to the elemental resolution, numerous nodes are connected to elements on
both northern and southern sides of the barrier island, i.e. they are connected to four boundary
edges. This delete interior elements sub-function deletes connecting elements to ensure that
the offending nodes have only two connected boundary edges. In Figure 2 the arrow points to one of
the elements that we wish to delete to make the connecting node traversable. The reason that this
element is the one to be deleted is that all the nodes on the element are connected to a boundary
edge, i.e. the element has two boundary edges. Note how the two other elements connected to the
offending node have only one boundary edge. Unfortunately, the choice is not always as clear cut
as this. In some instances there may be more than one connecting element that has two boundary
edges. In this case the lowest quality qualifying connected element is deleted. In other instances
there may be no connecting elements menthat have two boundary edges in which there are many
examples contained within Figure 2. Here, the lowest quality connected element is deleted. It is
worth pointing out that when there are no connecting element with two boundary edges the node
will often remain un-traversable after deleting one of the elements, but fix bad edges and mesh

iteratively calls delete interior elements until this condition is met.

5 Example of use

Mesh generation is accomplished with a standalone class that technically only requires a boundary,
but has a number of optionally useful input arguments. The meshgen class contains the method
build that calls the algorithm to generate the mesh using a modified force equilibrium approach.

First, the user passes their options and data to create an instance of the meshgen class.

mesh = meshgen(varargin)

Then the user calls the mesh generation algorithm by typing:

mesh = build(mesh)

or
mesh = mesh.build()

Which displays the mesh (if plot on= 1) as it is incrementally modified at nscreen intervals. After
convergence or reaching the maximum number of iterations itmax, it produces a mshgen class object
in which the user can access the triangulation’s points and triangle table (mesh.grd) and all the
options the mesh was built with. There are a number of methods that can be applied to msh class
objects which will be elaborated in section

Here we present a series of examples concerning how to use the software and some its strengths.
The mesh region could be modified for anywhere in the world by changing the extents of bbox only
if the shapefile has coverage in that region. It’s recommended that the user create a ‘datasets
’directory in the rootdir of where they installed this software and place their shapefile(s) and DEM(s)
they want to use there.

A couple of things to note when running the code:

1. If plot on == 1 the mesh starts off looking really bad when you run msh.build! In just a few
iterations you will see the mesh start to improve.

13

2. You may also notice some oversized and/or badly connected elements around channels, far in-
land, etc., during msh.build. These will be cleaned up after convergence of the mesh generator
algorithm to ensure that a valid mesh is returned (refer §2.2).

3. Take care when defining bbox and the min el to ensure you do not eat up all the memory on
the computer. Similarly, take care when plotting the DEM and edgelength functions. It is
very easy to slow the computer down and fill up your graphics card when plotting these.

14

5.1 Around the world

This example illustrates the ability to mesh anywhere in the world if one has a shapefile in the
region. Note that this example does not use a DEM.

1 %% STEP 1: set mesh extents and set parameters for mesh. South Island of New Zealand
2 bbox = [166 176 % lon min lon max
3 −48 −40]; % lat min lat max
4 min el = 250; % minimum resolution in meters.
5 max el = 20e3; % maximum resolution in meters.
6 max el ns = 1e3; % maximum resolution nearshore in meters.
7 grade = 0.20; % mesh grade in decimal percent.
8 R = 3; % number of elements to resolve features.
9

10 %% STEP 2: specify geographical datasets and process the geographical data to be ...
used later with other OceanMesh classes...

11 coastline = 'GSHHS f L1.shp';
12 gdat = geodata('shp',coastline,...
13 'bbox',bbox,...
14 'h0',min res);
15 % NOTE: You can plot the shapefile with bounding box by using the overloaded plot ...

command:
16 % plot(gdat,'shp');
17

18 %% STEP 3: create an edge function class
19 fh = edgefx('geodata',gdat,...
20 'fs',R,...
21 'max el',max el,...
22 'max el ns',max el ns,...
23 'g',grade);
24

25 %% STEP 4: Pass your edgefx class object along with some meshing options and build ...
the mesh...

26 msh = meshgen('h0',min el,'bbox',bbox,'ef',fh,...
27 'bou',gdat,'nscreen',1,'plot on',1,'itmax',100);
28 % now build the mesh with your options and the edge function.
29 msh = msh.build;
30

31 %% STEP 5: Plot it and write a triangulation fort.14 compliant file to disk.
32 plot(msh.grd,'tri');
33 write(msh.grd,'South Island NZ');

Figure 3: A simple example of how to use OceanMesh2D with a feature size edge function along
with some user defined bounds to control resolution in the meshing domain. Estimated time to
completion 10 minutes.

15

Figure 4: Result: Convergence after 30 iterations in 4 wall-clock minutes on PC, 51,812 vertices,
90,869 elements, qE = 0.958

16

5.2 High fidelity

Using higher resolution digital elevation data to create the coastline boundary will dramatically
improve the results. See the example below that uses the shapefile “combined2.shp” and the “com-
bined2 subset.nc” DEM, which was created by interpolating SRTM15+, the Coastal Relief Model
and then the Post-Sandy NCEI DEMs on a 90-m uniform grid using the software gdal. This example
illustrates the ability to capture small regions with high fidelity.

1 %% STEP 1: set mesh extents and set parameters for mesh. New York high resolution
2 bbox = [−74.5 −73.8
3 40.5 40.9];
4 min el = 30; % minimum resolution in meters.
5 max el = 1e3; % maximum resolution in meters.
6 max el ns = 240; % maximum resolution nearshore.
7 dt = 2; % Ensure mesh is stable at a 2 s timestep.
8 grade = 0.20; % mesh grade in decimal percent.
9 R = 3; % Number of elements to resolve feature.

10

11 %% STEP 2: specify geographical datasets and process the geographical data to be ...
used later with other OceanMesh classes...

12 coastline = 'combined2.shp';
13 dem = 'combined2 subset.nc';
14 gdat = geodata('shp',coastline,...
15 'dem',dem,...
16 'bbox',bbox,...
17 'h0',min el);
18 % NOTE: You can plot the dem with shapefile and bounding box by using the ...

overloaded plot command:
19 %plot(gdat,'dem');
20

21 %% STEP 3: create an edge function class
22 fh = edgefx('geodata',gdat,...
23 'fs',R,...
24 'max el',max el,...
25 'max el ns',max el ns,...
26 'dt',dt,...
27 'g',grade);
28

29 %% STEP 4: Pass your edgefx class object along with some meshing options and build ...
the mesh...

30 msh = meshgen('h0',min el,'bbox',bbox,'ef',fh,...
31 'bou',gdat,'nscreen',1,'plot on',1,'itmax',100);
32 % now build the mesh with your options and the edge function.
33 msh = msh.build;
34

35 %% STEP 5: Plot it and write a triangulation fort.14 compliant file to disk.
36 plot(msh.grd,'tri');
37 write(msh.grd,'NY HR');

Figure 5: This example uses a high resolution DEM and coastline shapefile to mesh the New York
area. The DEM bathymetry is used to ensure the mesh is stable with a 2 second time. Estimated
time to completion: about 15 minutes.

17

(a)

(b)

Figure 6: Result: Convergence after 40 iterations in approximately 15 minutes on a PC. There are
19,907 vertices, 33,212 elements, qE = 0.956.

18

5.3 Large domains

This example illustrates the size of domains (50◦ by 50◦) the program can handle in relatively short
times (15-20 minutes) on a personal computer. Reading the coastline and prepping the edgelength
functions can take about half the total time. Once prepped, convergence in msh.build can be quick.

1 %% STEP 1: set mesh extents and set parameters for mesh. The greater US East Coast ...
and Gulf of Mexico region

2 bbox = [−100 −50; % lon min lon max
3 10 60]; % lat min lat max
4 min el = 1e3; % minimum resolution in meters.
5 max el = inf; % maximum resolution in meters.
6 max el ns = 5e3; % maximum resolution nearshore.
7 wl = 60; % 60 elements resolve M2 wavelength.
8 dt = 5; % Ensure mesh is stable at a 5 s timestep.
9 grade = 0.20; % mesh grade in decimal percent.

10 R = 3; % Number of elements to resolve feature.
11

12 %% STEP 2: specify geographical datasets and process the geographical data to be ...
used later with other OceanMesh classes...

13 coastline = 'GSHHS f L1.shp';
14 dem = 'topo15 compressed.nc';
15 gdat = geodata('shp',coastline,...
16 'dem',dem,...
17 'bbox',bbox,...
18 'h0',min res);
19 % NOTE: You can plot the dem with shapefile and bounding box by using the ...

overloaded plot command:
20 %plot(gdat,'dem');
21

22 %% STEP 3: create an edge function class
23 fh = edgefx('geodata',gdat,...
24 'fs',R,...
25 'wl',wl,...
26 'max el',max el,...
27 'max el ns',max el ns,...
28 'dt',dt,...
29 'g',grade);
30

31 %% STEP 4: Pass your edgefx class object along with some meshing options and build ...
the mesh...

32 msh = meshgen('h0',min el,'bbox',bbox,'ef',fh,...
33 'bou',gdat,'nscreen',1,'plot on',1,'itmax',100);
34 % now build the mesh with your options and the edge function.
35 msh = msh.build;
36

37 %% STEP 5: Plot it and write a triangulation fort.14 compliant file to disk.
38 plot(msh.grd,'tri');
39 write(msh.grd,'ECGC');

Figure 7: Similar to example two but also uses DEM data to build the wavelength function edge
function and limit the CFL. Note how we set the max el to inf allowing the wavelength to control
the resolution in the deep ocean. Estimated time to completion: 20 minutes.

19

(a)

(b)

Figure 8: Desired result: Convergence after 20 iterations. There are 486,299 vertices, 905,605
elements, qE = 0.967. Notice in (b) how the wavelength parameter affects mesh resolution over the
Georges Bank.

20

6 Post-processing functions

6.1 msh.calcCFL

CFL = CalcCFL(msh obj,dt)

This method accepts a msh obj and a desired dt and outputs a vector np x 1 CFL which contains
the CFL condition at each vertex of the mesh assuming the flow is determined by the shallow water
wave speed plus the orbital velocity nearshore.

6.2 msh.checkTimestep

msh obj = CheckTimestep(msh obj,dt)

This method takes as input a msh obj and a desired dt and iteratively decimates vertices and triangles
that result in CFL violations giving back an updated msh obj. This enables the mesh to be time
march with the desired dt without instabilities. This method will delete your boundaries!
They can be recreated with msh.makeNS

6.3 msh.renum

msh obj = renum(msh obj)]

This method takes as input a msh obj and renumbers the vertices using Reverse Cuthill Mckee
algorithm so to minimize the bandwidth of the mass matrix. The Reverse Cuthill Mckee al-
gorithm requires the graph toolbox to use!.

6.4 msh.makeNs

msh obj = makeNs(msh obj,dir,‘Islands’,‘Outer’,)

This method takes as input a msh obj and adds either island or outer boundary (either mainland
boundaries or ocean boundaries) nodestrings to an existing msh obj. If you would like to add island
nodestrings, you would use the ‘Islands’ argument to the method call. If you would like to add outer
boundaries, you would use the ‘Outer’ argument to the method call. Do one at a time. The
argument ‘dir’ is either 0 or 1 and indicates the traversal direction (0 for clockwise and 1 for counter
clockwise) and only matters for determining the traversal path along outer boundaries.

6.5 + operator

The plus operator has been overloaded to facilitate automatic merging of partially or fully overlap-
ping triangulations represented each as msh classes. The user simply adds the two msh class objects
together setting it equal to the name of the combined triangulation represented also a msh class
object.

msh obj = msh obj1 + msh obj2

21

Note the merging process is not communicative since the contents from the first msh object will be
retained in areas of overlap. In other words the contents of the second msh object will be overwritten
in areas of overlap with the first msh object.

6.6 Example of workflow

When creating high fidelity triangulations that are highly multiscale in nature, it is necessary for
the sake of memory to partition the domain into partially overlapping rectangular boxes. Besides
relaxing the memory requirement, this also allows one to script the mesh generation process and
possibly trivially parallelize it. See the script below.

After the meshes are created, we will merge them together automatically using the plus operator
as seen in the script below.

Once the final merged mesh is created, it is then necessary to create the input files for a simulation
and determine the stable timestep. This can be a tedious process so we have provided the user the
ability to script this. In the code below, we first interpolate the bathymetry using a cell-averaged ap-
proach and then ensure the mesh will be simulatable with a 2 second timestep. Conversely, one could
also run CalCFL for a 2 second timestep and then see if the maximum CR was under 0.75. Following
this, we create the nodal attributes (internal tide friction, primitive weighting in the continuity equa-
tion, self-attraction and loading), specify the boundary conditions, add 8 tidal constituent elevation
specified boundary conditions from TPXO9, and set some various output options for the control
file (fort.15). We have also provided the ability to automatically determine all the NOAA CO-OP,
NDBC and blah stations within the meshes extents. By passing the “sta database” name-value pair,
the method makef15 will automatically populate the fort.15 with the stations that fall inside the
meshes extents. We conclude the script by using the overloaded write method, which will write all
the input files for simulation. The user can then simulate ADCIRC with the triangulation.

22

1 clearvars; close all;
2 % Post−processing script to take a msh and create all the necessary
3 % input files for an ADCIRC simulation
4 %%
5 MSHFILE = 'step1.14' ; % filename of mesh
6 DT = 2 ; % goal timestep
7 TS = '01−Aug−2012 00:00' ; % start time of simulation
8 TE = '31−Nov−2012 00:00' ; % end time of simulation
9 %%

10 DEMFILE = 'combined wpr wphilly.nc' ;
11 BUOYFILE = 'Gridded N values.mat';
12 TPXO9 = 'tpxo9 netcdf/h tpxo9.v1.nc';
13 CONST = 'major8' ;
14 %%
15 m = msh(MSHFILE) ;
16

17 m = GridData(DEMFILE,m) ;
18

19 m = CheckTimestep(m,DT) ;
20

21 m = renum(m) ;
22

23 m = makens(m,'islands') ;
24

25 m = makens(m,'outer',1) ;
26

27 m = makens(m,'outer',0) ;
28

29 m = Calc tau0(m) ;
30

31 m = Calc IT Fric(m,'Nfname',BUOYFILE) ;
32

33 m = Make f15(m, TS, TE, DT, 'tidal database', TPXO9, 'const', ...
{CONST},'sta database',{'CO−OPS','NDBC',[1]}) ;

34 m.f15.dramp = 30; % ramp period
35 m.f15.nramp = 1; % ramp type
36 m.f15.outge = [5 30.0 31.0 3600]; % global elevation
37 m.f15.ntip=2; % sal + normal tidal potential
38 m.f15.oute = [5 30.0 35.0 360]; % station output frequency
39 m.f15.outhar = [30 120 360 0]; % THAS, THAF, NHAINC, FMV
40 m.f15.outhar flag = [0 0 5 0] ; % NHASE, NHASV, NHAGE, NHAGV
41

42 write(m) ;

23

7 Appendix: Class Prototypes

Here will list the class prototypes and a brief description of each method.

7.1 edgefx

edgefx(h0,bbox,

7.2 geodata

7.3 msh

7.4 mshgen

References

[1] J. Koko, “A Matlab mesh generator for the two-dimensional finite element method,” Applied
Mathematics and Computation, vol. 250, pp. 650–664, 2015.

[2] P.-o. Persson and G. Strang, “A Simple Mesh Generator in MATLAB,” SIAM Rev., vol. 46,
p. 2004, 2004.

[3] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations.
Society for Industrial and Applied Mathematics, 1 1998.

[4] J. J. Westerink, R. A. Luettich, A. M. Baptists, N. W. Scheffner, and P. Farrar, “Tide and Storm
Surge Predictions Using Finite Element Model,” Journal of Hydraulic Engineering, vol. 118,
pp. 1373–1390, 10 1992.

[5] F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling the global ocean tides: modern
insights from FES2004,” Ocean Dynamics, vol. 56, pp. 394–415, 12 2006.

[6] P. O. Persson, “Mesh size functions for implicit geometries and PDE-based gradient limiting,”
Engineering with Computers, vol. 22, no. 2, pp. 95–109, 2006.

[7] D. Engwirda, Locally optimal Delaunay-refinement and optimisation-based mesh generation. PhD
thesis, University of Sydney, 2014.

[8] D. Wirasaet, S. Brus, C. Michoski, E. Kubatko, J. Westerink, and C. Dawson, “Artificial bound-
ary layers in discontinuous Galerkin solutions to shallow water equations in channels,” Journal
of Computational Physics, vol. 299, pp. 597–612, 10 2015.

[9] P. Brufau, P. Garcã, and M. E. Vã, “Zero mass error using unsteady wetting – drying conditions
in shallow ows over dry irregular topography,” International Journal for Numerical Methods in
Fluids, vol. 1082, no. May, pp. 1047–1082, 2004.

24

	Introduction
	Foreword

	Things everyone should know
	Installation
	Mesh
	Domain
	Digital Elevation Model
	Boundary

	Edgelength functions
	Distance
	Wavelength
	Slope
	Channels (ch)

	Mesh stability and validity
	Grading
	CFL limiting
	Ensuring Mesh Validity

	Example of use
	Around the world
	High fidelity
	Large domains

	Post-processing functions
	msh.calcCFL
	msh.checkTimestep
	msh.renum
	msh.makeNs
	+ operator
	Example of workflow

	Appendix: Class Prototypes
	edgefx
	geodata
	msh
	mshgen

