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ABSTRACT

Motivation: Proteins are essential macromolecules of life and thus
understanding their function is of great importance. The number of
functionally unclassified proteins is large even for simple and well
studied organisms such as baker’s yeast. Methods for determining
protein function have shifted their focus from targeting specific pro-
teins based solely on sequence homology to analyses of the entire
proteome based on protein-protein interaction (PPI) networks. Since
proteins interact to perform a certain function, analyzing structural
properties of PPI networks may provide useful clues about the biologi-
cal function of individual proteins, protein complexes they participate
in, and even larger subcellular machines.

Results: We design a sensitive graph theoretic method for comparing
local structures of node neighborhoods that demonstrates that in PPI
networks, biological function of a node and its local network structure
are closely related. The method summarizes a proteins local topo-
logy in a PPI network into the vector of graphlet degrees called the
signature of a protein and computes the signature similarities bet-
ween all protein pairs. We group topologically similar proteins under
this measure in a PPl network and show that these protein groups
belong to the same protein complexes, perform the same biological
functions, are localized in the same subcellular compartments, and
have the same tissue expressions. Moreover, we apply our techni-
que on a proteome-scale network data and infer biological function of
yet unclassified proteins demonstrating that our method can provide
valuable guidelines for future experimental research such as disease
protein prediction.

Availability: Data is available upon request.

Contact: natasha@ics.uci.edu

1 INTRODUCTION

The recent technological advances in experimental bioloaye
yielded large amounts of biological network data. One suelmgple
is protein-protein interaction (PPI) network®r graphg, in which
nodes correspond to proteins and undirected edges reppsesi-
cal interactions between them. Since a protein almost rastsrin
isolation, but rather interacts with other proteins in erdeperform
a certain function, PPl networks by definition reflect theeint
connected nature of biological processes. Analyses of &flanks
may give valuable insight into biological mechanisms anoige
deeper understanding of complex diseases. Defining thgéorela
ship between the PPI network topology and biological florcand
inferring protein function from it is one of the major chailtges in
the post-genomic era (Nabieva et al., 2005; Vazquez et @D3;2
Schwikowski and Fields, 2000; Hishigaki et al., 2001; Latovand
Kasif, 2003; Deng et al., 2003, 2004; Brun et al., 2004).

*to whom correspondence should be addressed

1.1 Background

Various approaches for determining protein function froRi Ret-
works have been proposed. “Neighborhood-oriented” ames
observe the neighborhood of a protein to predict its fumctiy
finding the most common function(s) among its neighbors. The
“majority rule” approach considers only nodes directly wected to
the protein of interest (Schwikowski and Fields, 2000). Aypiove-
ment is made by also observing indirectly connected levetigh-
bors of a node (Chua et al., 2006). Furthermore, the funatidim
the highesty? value amongst the functions of alh‘neighboring
proteins” is assigned to the protein of interest (Hishigekial.,
2001). Other approaches use the idea of shared neighborsu(&a
and Liang, 2003) or the network flow-based idea (Nabieva et al
2005) to determine protein function.

Several global optimization-based function predictiorategies
have also been proposed. Any given assignment of functitiset
whole set of unclassified proteins in a network is given aescor
counting the number of interacting pairs of nodes with no icam
function; the functional assignment with the lowest scoseimi-
zes the presence of the same function among interactingipsot
(Vazquez et al., 2003). An approach that reduces the coitiputa
requirements of this method has been proposed (Sun et @6).20

Cluster-based approaches are exploiting the existencagains
in PPI networks that contain a large number of connectioris be
ween the constituent proteins. These dense regions ara afdige
common involvement of those proteins in certain biologfmalces-
ses and therefore are feasible candidates for biologicaptaxes.
The restricted-neighborhood-search clustering algorigfficiently
partitions a PPI network into clusters identifying knowndgore-
dicting unknown protein complexes (King et al., 2004). Sarly,
highly connected subgraphs are used to identify clustarstinorks
(Hartuv and Shamir, 2000), defining the relationship betwt
PPI network size and the number and complexity of the idetifi
clusters, and identifying known protein complexes fromsthelu-
sters (Przulj et al., 2004). Moreover, Czekanowski-Distathce is
used for protein function prediction by forming clustersobteins
sharing a high percentage of interactions (Brun et al., 2004

In addition to protein function prediction, several stdieave
investigated associations between diseases and PP ketoypm-
logy. Radivojac et al. (Radivojac et al., 2008) have triedtimntify
candidate disease genes from a human PPI network by encoding
each gene in the network based on the distribution of shortes
path lengths to all genes associated with disease or haviogrk
functional annotation. Additionally, Jonsson and Batem¢3on
and Bates, 2006) analyzed network properties of cancersgams
demonstrated greater connectivity and centrality of cagemes
compared to non-cancer genes indicating an increasecdateole
of cancer genes within the interactome.
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1.2 Approach g%glpﬂﬂgt 3-node graphlets, 4-node graphlets

We address the above mentioned challenge as follows. Riest, OI % i'i 5% ;I\. SI:I Y 12@ g
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human, respectively), we hypothesize that PPI networkcktra © ©n Gz Ga Gu Gx  Gx Gy Gu Ga
and biological function are related in other eukaryoticamigms
as well. Next, since the number of functionally unclassifieateins ~ Fig- 1. The thirty 2-, 3-, 4-, and 5-node graphleGo, i1, . . ., Giag

is large even for simple and well studied organisms such kerlsa ~ @nd their automorphism orbits, 1,2,...,72. In a graphletG;, i €
yeastSaccharomyces cerevisi@efia-Castillo and Hughes, 2007), {0,1,...29}, nodes belonging to the same orbit are of the same shade

we describe how to apply our technique to predict memberiship (Przulj, 2006).
protein complexes, biological functional groups, and slibtar

compartments of yet unclassified yeast proteins. Additignwe  \ve compute node signature similarities as follows. We dedine
show how the method can be used for identification of potentia;s_jimensional vectoiv” containing the weightsy; corresponding

disease genes. _ to orbitsi € {0,...,72}. We assign different weights to different
Our method belongs to the group of clustering-based appesac o s for the reasons illustrated below. For example, tfierences
However, compared to other methods that define a clusterassad orbit 0 (i.e., in the degree) of two nodes will automatically imply

interconnected region of a network, our method defines itssta 4 gifferences in all other orbits for these nodes, sinaarhits con-
of nodes with 'S|m|Iar topologicaignatureqdefined below). Thus, tain, i.e., “depend on”, orbit. Similarly, the differences in orbit
nodes belonging to the same cluster do not need to be coln@Tte e triangle) of two nodes will automatically imply the fdifences
belong to the same part of the network. in all other orbits of the two nodes that contain orBjtsuch as

orbits 14 and 72. We generalize this to all orbits. Thus, wedne

to assign higher weights to “important” orbits, those tha aot
2 METHODS affected by many other orbits, and lower weights to “lessdrmyp
§ ant’ orbits, those that depend on many other orbits. By dsimg
we remove the redundancy of an orbit contained in other arbi
compute weightsv;s, each orbit is assigned an integes; that is
obtained simply by counting the number of orbits that affetit .
We consider that each orbit affects itself. For examplepfbit 15,
015 = 4, since itis affected by orbits 0, 1, 4, and itself; simifa0.4
=5, since orbit 44 is affected by orbits 0, 2, 3, 11, and its@lé
computew; as a function ob; as follows:

3

Our new measure of node similarity generalizes the degre o
node, which counts the number of edges that the node touiches,
the vector ofyraphlet degreescounting the number of graphlets that
the node touchesgraphletsare small connected non-isomorphic
induced subgraphs of a large network (Przulj et al., 2064k (
Figure 1). As opposed tpartial subgraphs (e.g., networkotifs
(Milo et al., 2002)), graphlets must fieduced i.e., they must con-
tain all edges between the nodes of the subgraph that arenpres

in the large network. We count the number of graphlets towghi log(0:)

a node for all 2-5-node graphlets, denoted @y, G, ..., Gag wi = 1= log(73)"

in Figure 1; counts involving larger graphlets become caotaupor

nally infeasible for large networks. Clearly, the degreeaafode We apply a logarithm function te;s to assign higher weights

is the first coordinate in this vector, since an edge (graghig is  w;S to the more “important” orbits (those that are not affedigd
the only 2-node graphlet. We call this vector tignatureof anode. ~ many other orbits). Also, since the maximum value thabanan
For example, an outer (black) node in grapldigttouches graphlets take is73 (for 2-5-node graphlets), we divideg(o;) by log(73) to
Go, G1, G3, andGy once, and it touches no other graphlets. It is scale it to [0, 1]. Since an orbit dependency cownof 1 indicates
topologically relevant to distinguish between nodes tingra 3-  that no other orbits affect orbit (i.e., this orbit is of the highest
node linear path (graphl€t,) at an end, or at the middle node; we importance), we invert this scaled value of orbit depenanto

provide a mathematical formulation of this phenomenon flagra- ~ assign the highest weight; of 1 to orbit i with o, = 1. Clearly,
phlets with 2-5 nodes. This is summarizeddaytomorphism orbits ~ w; € [0, 1] forall i € {0, ..., 72} and the formula correctly assigns
(or justorbits, for brevity): by taking into account the “symmetries” lower weights to less important orbits.

between nodes of a graphlet, there are 73 different orbit@f- For a nodeu, we denote byu; thei*" coordinate of its signature

node graphlets, numerated from 0 to 72 in Figure 1 (see [[Przu vector, i.e.,u; is the number of times node touches orbit. We
2006) for details). Thus, the signature vector of a node Badr-  define the distanc®; (u, v) between the'" orbits of nodes: and
dinates. For example, a node at orbit 15 in graplifgttouches v as:

orbits 0, 1, 4, and 15 once, and all other orbits zero timessTis

signature will have 1s in the'®, 1°¢, 4", and 1%" coordinate, and Di(u,v) = ws x [log(u; + 1) — log(vi + 1)

0Os in the remaining 69 coordinates. ' log(maz{ui,vi} + 2)
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We uselog in the numerator because tifé coordinates of signa-
ture vectors of two nodes can differ by several orders of ritade
and the distance measure should not be entirely dominatéuekg
large values. Also, by using these logarithms, we take intmant
the relative difference between andv; instead of the absolute dif-
ference. We add 1 ta,; andv; in the numerator of the formula for
D;(u, v) to prevent the logarithm function to go to infinity. We scale
D; to be in [0, 1) by dividing with the value of the denominator in
the formula forD;(u, v). We add 2 in the denominator of the for-
mula for D;(u, v) to prevent it from being infinite or 0. We define
the total distancé(u, v) between nodes andv as:

D(u,v) =

Clearly, the distanc®(u, v) is in [0, 1), where distance 0 means
the identity of signatures of nodesandwv. Finally, thesignature
similarity, S(u, v), between nodes andv is:

S(u,v) =1— D(u,v).

For example, the two outer (black) nodes at orbit 15 in gretphi)
have the same signatures, and thus, their total distancand their
signature similarity is 1.

We form clusters in a PPI network as follows. For a node ofinte
rest, we construct a cluster containing that node and aksad a
network that are similar to it; we repeat this for each nodéhm
PPI network. According to the signature similarity metriodesu
andv will be in the same cluster if their signature similarByu, v)
is above a chosen threshold. We choose an experimentadiyndiet
ned thresholds of 0.9-0.95. For thresholds above thesevabnly a
few small clusters are obtained, especially for smallerrfe®Aorks,
indicating too high stringency in signature similaritiésor thres-
holds bellow 0.9, the clusters are very large, especialidmer
PPI networks, indicating a loss of signature similarity.illastrate
signature similarities and our choices of signature siritylahres-
holds, in Figure 2 we present the signature vectors of yeagtips
in the PPI network of (Krogan et al., 2006) with signatureikint
ties above 0.90 (Figure 2 A) and below 0.40 (Figure 2 B). Sigrea
vectors of proteins with high signature similarities falithe same
pattern, while those of proteins with low signature siniiles have
very different patterns.

3 RESULTS AND DISCUSSION
3.1 Results

We apply our method to si$. cerevisiad®P| networks and three
humanPPI networks. Th&. cerevisia®P| networks are henceforth
denoted by “vonMering-core” (von Mering et al., 2002), “We-
ring” (von Mering et al., 2002), “Krogan” (Krogan et al., 2600
“DIP-core” (Deane et al., 2002), “DIP” (Xenarios et al., 2)0
and “MIPS” (Mewes et al., 2002). “vonMering-core” contaimisly
high-confidence interactions described by von Mering et(\an
Mering et al., 2002); it contains 2,455 interactions amo8§8 pro-
teins obtained mainly by tandem affinity purification (TAR)daut
et al., 1999; Gavin et al., 2002) and High-Throughput MasscSp
tromic Protein Complex Identification (HMS-PCI) (Ho et &002).
“vonMering” is the PPI network containing the top 11,000 g

medium-, and low-confidence interactions amongst 2,401epro
ins described by von Mering et al. (von Mering et al., 2002);
the dominant techniques used to identify PPIs in this néiveoe
TAP, HMS-PCI, gene neighborhood, and yeast-two-hybridH).2
“Krogan” is the “core” PPI data set containing 7,123 intéi@ts
amongst 2,708 proteins obtained by TAP experiments as idescr
bed by Krogan et al. (Krogan et al., 2006). “DIP-core” is theren
reliable subset of the yeast PPI network from DIP (Xenarica.e
2002) as described by Deane et al. (Deane et al., 2002); it con
tains 5,174 interactions amongst 2,210 proteins. “DIP™ &PS”

are the yeast PPI networks downloaded in November 2007 from
DIP (Xenarios et al., 2002) and MIPS (Mewes et al., 2002) -data
bases, respectively; they contain 17,201 and 12,525 oiters
amongst 4,932 and 4,786 proteins, respectively. The thuesh
PPI networks that we analyze are henceforth denoted by “BIO-
GRID” (Stark et al., 2006), “HPRD” (Peri et al., 2004), andu#&t”
(Rual et al., 2005). “BIOGRID” and “HPRD” are the human PPI
networks downloaded in November 2007 from “BIOGRID” (Stark
et al., 2006) and “HPRD” (Peri et al., 2004) databases, @spe
tively; they contain 23,555 and 34,119 interactions ambrig#41
and 9,182 proteins, respectively. “Rual” is the human PRNaEk
containing 3,463 interactions amongst 1,873 proteins easrtbed

by Rual et al. (Rual et al., 2005). We removed all self-loopd a
multiple edges from each of the PPI networks that we analyzed

The entire PPI network is taken into account when computing
signature similarities between pairs of nodes (i.e., imsjeand for-
ming clusters (see section 2). However, here we only repart t
results of analyzing proteins involved in more than foueratti-
ons. We discard poorly connected proteins from our clusiecause
they are more likely to be involved in noisy interactionsm#ar
was done by Brun et al. (Brun et al., 2004). Also, we discamy ve
small clusters containing less than three proteins. Foreimaining
clusters, we search for commamotein properties in yeast PPI
networks, we look for the common protein complexes, fumalio
groups, and subcellular localizations (described in MIR®BWes
et al., 2002)) of proteins belonging to the same cluster;umén
PPI networks, we look for the common biological processes, c
lular components, and tissue expressions (described irCHPRri
et al., 2004)) of proteins in the same cluster.

Classification schemes and the data for the three protein pro
perties that we analyzed in yeast PPI networks were dowatbad
from MIPS database (Mewes et al., 2002) in November 2007. For
each of these three classification schemes (corresporaprmgtein
complexes, biological functions, and subcellular locgliians), we
define two levels of strictness: tis¢rict scheme uses the most spe-
cific MIPS annotations, and tHéexible one uses the least specific
ones. For example, for a protein complex “category” anmatdty
510.190.900n MIPS, the strict scheme returad.0.190.900 and
the flexible one returnS10. Classification schemes and the data for
the three protein properties that we analyzed in human RRbnles
(corresponding to biological processes, cellular comptsmeand
tissue expressions) were downloaded from HPRD database (Pe
et al., 2004) in November 2007. In order to test if our methlod c
sters together proteins having the same protein propgwisefine
our clusters by removing the nodes that are not containedyirof
the yeast MIPS protein complex, biological function, orellular
localization categories, or in any of the human HPRD biclogi
cal process, cellular component, or tissue expressiorgaaés,
respectively.
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Signatures of proteins with similarities above 0.90 Signatures of proteins with similarities bellow 0.40
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Fig. 2. Signature vectors of proteins with signature similaritiés) above 0.90; and (B) below 0.40. The 73 orbits are preskon the abscissa and the
numbers of times that nodes touch a particular orbit areepted on the ordinate in log scale. In the interest of thehatiss of the plot, we added 1 to all
orbit frequencies to avoid the log-function to go to infinitythe case of orbit frequencies of 0.

in C. For example, in Figure 3, according to the strict scheme,
RPO26 proteins RPO26 and SMB1 are in a common biological function

category with SMD1, but they themselves are not in any common

H:gg:g; 11;23'03'01 11.04.03.01 biological fL_mctic_)n categqry. Although not all thr_ee pioteare in
11.02.03.01 16.03 the same biological function category and the hit-rate Iy 6%,
16.03 the miss-rate is 0/3=0%, since every node is in at least one co

mon biological function category with another node in thestér.
Fig. 3. An example of a three-node cluster, consisting of proteir©Rs, ~ Clearly, the miss-rate for the flexible scheme is also 0/3~¢itice
SMD1, and SMB1. The categories of biological functions tihat proteins  the three proteins are in the same biological function cate¢l1)
belong to are presented bellow the protein names. with respect to this scheme. Thus, if a protein belongs tersév
different categories for a given protein property (whickxpected),
the hit-rate in the cluster might be lower than 100% (as titated
in Figure 3). Therefore, miss-rates are additional indicabf the
accuracy of our approach.

For each of the six yeast PPI networks, the three yeast protei
properties, and the two schemes, we measure the numbestérslu
(out of the total number of clusters in a network) having givdt-
and miss-rates. We bin the hit- and miss-rates in increntrii8%.
The results for the flexible scheme are presented in Figufeod.
subcellular localizations, in vonMering-core network,98®f the
clusters have hit-rate above 90%; for the remaining five agtsy
65% of clusters have hit-rates above 60% (Figure 4 A). FanestH

In our clusters, we measure the size of the largest commen cat
gory for a given protein property as the percentage of thetetu
size; we refer to it as thkit-rate. That is, we compute the hit-rate
of a clusterC asHit(C) = ma:c— whereN, is the number of
nodes inC' having a given proteln property, and N is the total
number of nodes . Clearly, a yeast protein can belong to more
than one protein complex, be involved in more than one bioklg
function, or belong to more than one subcellular compartr(emd
similar holds for human proteins). Thus, it is possible toehan

overlap between categories, as well as more than one largest works, miss-rates for 72% of clusters are bellow 10% (FiguB).

gory in a cluster for a given protein property. We illustrétiés for Similarly, for biological functions, the miss-rates in sitk networks

biological functions in the cluster presented in Figure@sisting ; .
- ) . are under 10% for 81% of the clusters (Figure 4 D). The higébr
of yeast proteins RPO26, SMD1, and SMB1. Accarding o thietstr biological functions are above 60% for 79% of the clusterbath

schemt_a, proteir_l SMDT is in the common biolog_ical func_tioreea von Mering networks; in the remaining four networks, 57% o t
gory with protein RPO26 (16.03), as well as with pf"te”.‘ SMB1 clusters have hit-rates above 50% (Figure 4 C). Finallypfotein
(.11'04'03'04)' Thus, there are two largest common blO@@mc- complexes, 47% clusters in vonMering-core, vonMering, Bife-
tion categ_ones. The size of the largest common biologicatfion core networks have hit-rates above 60%, 36% of clusters g
category in the cluster is two and the hit-rate is 2/3=67%. the and MIPS networks have hit-rates above 50%, and 30% of chiste

flexiple scheme, all three proteins are .in one common biolgi b network have hit-rates above 40% (Figure 4 E). Migega
function category (11) and thus, the size of the largest comm for protein complexes are bellow 10% for 39% of the clusters i

biological function category is three and the hit-rate 3=3/00%. both von Mering networks and in DIP-core network: in the rema

We also define theniss-rateas the percentage of the nodes in ning three networks, 33% of the clusters have miss-ratéat8b%
a cluster that are not in any common category with other nOdefFlgure 4F).

in the cluster, for a given protein property. That is, we catep
the miss-rate of a cluste?’ as Miss(C) = % whereU, is the
number of nodes i’ not sharing any of their protein properties
p with any other node irC', and N is the total number of nodes

Similarly, for each of the three human PPI networks and their
three protein properties that we analyzed, we measure timbdeu
of clusters (out of the total number of clusters in a netwdrying
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Fig. 4. The results of applying our method to the six yeast PPI nétsvgronMering-core, vonMering, Krogan, DIP-core, DIP, aWitPS) and the three

protein properties (subcellular localizations, biol@gifunctions, and protein complexes) in accordance witHléxble scheme: (A) hit-rates for subcellular
localizations; (B) miss-rates for subcellular localipas; (C) hit-rates for biological functions; (D) miss-rafer biological functions; (E) hit-rates for protein
complexes; (F) miss-rates for protein complexes.

given hit- and miss-rates. The results are presented im€gu-or  clusters in Rual network, respectively (Figure 5 C). Miates are
cellular components, in all three human PPI networks, 86%hef lower than 10% for 61% of clusters in BIOGRID and HPRD net-
clusters have hit-rates above 50% (Figure 5 A). Miss-raie$8%  works, and for 48% of clusters in Rual network, respectiyEigure

of clusters in BIOGRID and HPRD networks are bellow 10%, whil 5 D). Finally, for biological processes, hit-rates are ab0% for

in Rual network 76% of clusters have miss-rates bellow 29%uie 55% of clusters in BIOGRID network, for 45% of clusters in HPR
5 B). Similarly, for tissue expressions, hit-rates are &®0% for  network, and for 33% of clusters in Rual network, respebtive
74% of clusters in BIOGRID and HPRD networks, and for 98% of (Figure 5 E). Miss-rates are bellow 29% for 58% of the cluster
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BIOGRID network and for 71% of the clusters in HPRD network; protein that is involved in vesicular transport pathwaysakaha
in Rual network, 44% of the clusters have miss-rates bellé® 3 et al., 2008). Finally, our method predicts that protein PRIl

(Figure 5 F).
To evaluate the effect of noise in PPl networks to the acgurac

involved in biogenesis of cellular components and SGD ssigge
that it is involved in membrane fusion during mating.

of our method, we compare the results for the high-confidence

vonMering-core network and the lower-confidence vonMerniet
work (Figure 4). As expected, clusters in the more noisy netw
have lower hit-rates compared to the high-confidence nétwor
However, low miss-rates are still preserved in clustersath met-
works for all three protein properties, indicating the rsimess of
our method to noise present in PPI networks.

Thus far, we demonstrated that our method identifies groéips
nodes in PPI networks having common protein properties. Ou
technique can also be applied to predict protein propedfeget
unclassified proteins by forming a cluster of proteins thratsimi-
lar to the unclassified protein of interest and assigningetrost
common properties of the classified proteins in the clustér.do
this for all 115 functionally unclassified yeast proteinsnfr MIPS
that have degrees higher than four in any of the six yeast BRI n
works that we analyzed. In Tables 1 and 2, we present thegeedi
functions for proteins with prediction hit-rates of 50% dgler
according to the strict and the flexible scheme, respegtivighe
full data set with functional prediction hit-rates lowerath 50%
is available upon request. Note that a yeast protein cambeim
more than one yeast PPl network that we analyzed. Thus,-biol
gical functions that such proteins perform can be prediftech
clusters derived from different yeast PPI networks. We plegkan
overlap of the predicted protein functions obtained fromitiple
PPI networks for the same organism, additionally verifytimg cor-
rectness of our method. Furthermore, there exists ovegapden
our protein function predictions and those of others (Vazoet al.,
2003).

Finally, we survey the literature and verify that our mettsoat-
cessfully predicts biological functions of the followinge proteins

from Tables 1 and 2. Our method predicts that protein PWP1 is

involved in rRNA processing; this is confirmed by SGD (Cherry
et al., 1998) and (Zhang et al., 2004). We also predict thatepr
IES2 is involved in transcriptional control; this functias veri-
fied by (Xu et al., 2007; Svaren et al., 1994; Karnitz et al9Q)9

(0)

3.2 Discussion

To our knowledge, this is the first study that relates the R®{ n
work structure to all of the following: protein complexe®lbgical
functions, and subcellular localizations for yeast, arltlize com-
ponents, tissue expressions, and biological processelsufoan.
Starting with the topology of PPI networks of different ongams
}hat are of different sizes and are originating from a widecsmum
of small-scale and high-throughput PPI detection tectesguur
method identifies clusters of nodes sharing common proteipgr-
ties. Our method accurately uncovers groups of nodes bielgptg
the same protein complexes in the vonMering-core netwat¥ 4f
clusters have 100% hit-rate according to the flexible schéris
additionally validates our method, since PPIs in this nelware
obtained mainly by TAP (Rigaut et al., 1999; Gavin et al., 200
and HMS-PCI (Ho et al., 2002), which are known to favor protei
complexes.

Our node similarity measure is highly constraining, sinectake
into account not only a node’s degree, but also additiondigr&-

0phlet degrees” (see section 2). Since the number of grapbtet

nodes increases exponentially with we use 2-5-node graphlets
(see Figure 1). However, our method is easily extendiblad¢tude
larger graphlets, but this would increase the computalticomple-
xity; the complexity is currentlyD(]V'|°) for a graphG/(V, E), since
we search for graphlets with up fonodes. Nonetheless, since our
algorithm is “embarrassingly parallel” (i.e., can easiydistributed
over a cluster of machines), extending it to larger graghkefea-
sible. In addition to the design of the signature similaritgasure
as a number in (0, 1], this makes our technique usable foelarg
networks.

3.3 FutureDirections

Our method can also be applied to disease genes. We corisédwtt
of genes implicated in genetic diseases available from HIFRdDi

Human OLA1 has been shown to define an ATPase subfamily iret al., 2004). To increase coverage of PPls, the human PRbriet

the Obg family of GTP-binding proteins (Koller-Eichhorn ait,
2007) indicating that yeast OLA1 might also be involved intpin
binding, as predicted by our method. Our method predictstwo-
tions for protein STO1: protein fate (folding), the confitina of
which is indicated by (Grishchuk and Mclintosh, 1999), anmdlbig
function, the confirmation of which is indicated in SGD (Cfyer
et al., 1998). Our method correctly predicts that YFRO16ovsl-
ved in biogenesis of cellular components, since proteiroeed
by YFRO16c¢ interacts with Spa2p that is involved in cytokise
and cell wall morphogenesis (Shih et al., 2005). It also igted
that YPT35 is involved in cellular transport, transportilities
and transport routes; SGD confirms that YPT35 binds to prstei
involved in ER-Golgi or vesicular transport. For proteirML, our
method predicts DNA repair function; SGD suggests that ILM1
may be involved in mitochondrial DNA maintenance and reeplir
for slowed DNA synthesis—induced filamentous growth. Weljote
that protein YET1 is involved in cellular transport; thisfition is
also indicated in SGD where YET1 is described as an endoptasm
reticulum transmembrane protein and a homolog of human BAP3

that we analyze is the union of the human PPI networks fromBIPR
BIOGRID, and Rual, which consists of 41,755 unique intecarst
amongst 10,488 different proteins. There are 1,491 disgases in
this PPI network out of which 71 are cancer genes. If grapblomy

is related to function, then we might expect that genes atiedeo
cancer might have similar graphlet degree signatures. Stothés
hypothesis, we looked for all proteins with a signature kinty

of 0.95 or better when compared to protein TP53. The regultin
cluster contains 10 proteins, eight of which are diseasegesix

of these eight disease genes are cancer genes (TP53, EFRBD0, S
BRCAL, EGFR, and AR). The remaining two proteins in the @ust
are SMAD2 and SMAD3 which are members of TGF-beta signa-
ling pathway whose deregulation contributes to the pathesje of
many diseases including cancer (Gambichler et al., 200¥).sTri-
king signature similarity of this 10-node cluster is depitin Figure

6. To further increase our confidence that local graph tapoie
related to function, we verified that decreasing the sirntyldhres-
hold increases the number of nodes in the cluster but dexse¢hs
proportion of those nodes that are disease-related. Fon@ra at
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Fig. 5. The results of applying our method to the three human PPlarksyBIOGRID, HPRD, and Rual) and the three protein progercellular com-
ponents, tissue expressions, and biological procesg&shit(rates for cellular components; (B) miss-rates foliutar components; (C) hit-rates for tissue
expressions; (D) miss-rates for tissue expressions; (Eatas for biological processes; (F) miss-rates for lgmial processes.

similarity 0.90, the cluster consists of 39 genes but moaa thalf ~ and its membership in protein complexes, functional groapsl
(21) are non-disease related. Of the 18 disease-relatedgenly 8  subcellular compartments for yeast, and in cellular corepts) tis-
are cancer genes. In other words, decreasing the thresboldf95  sue expressions, and biological processes for human. iéadality,
to 0.90 barely increases the number of cancer genes butuplesr we demonstrate that our method can be used to predict bialogi
the total number of matching genes, thus decreasing théfisfigc ~ function of uncharacterized proteins and possibly to idiemian-
by about a factor of 3. A more complete analysis of how topielog didate cancer genes. Thus, this study provides evidendetitba
cal clustering relates to diseases will be published in taémming  graphlet representation of a PPl network has importantiaag
paper. ons for protein function prediction and gene disease asgoni
Moreover, the method can be applied to different types dbbioal
and other real-world networks, give insight into complewli
4 CONCLUSIONS gical mechanisms and provide guidelines for future expemnial

We present a new graph theoretic method for detecting tlai-rel research.

onship between local topology and function in real-worltvegks.
We apply it to proteome-scale PPI networks and demonsthate t
link between the topology of a proteins neighborhood in tstgvork
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Protein of PPI Number of Nun;lber_?fd ::]oTel?sg ?; Mi
rotein o Degree proteins in unciassife Majority (and predicted) function cluster with Hit-rate wll
interest Network proteins in - rate

cluster the majority
cluster .
function
PWP1
(YLR196W) 22 vonMering 23 1 | rRNA processing 13 59.09% 13.64%
STO1
(YMR125W2) 42 vonMering 6 1 | ATP binding 3 60.00% 20.00%
YMRO074C 6 vonMering 3 1 | ribosomal proteins 2 100.00% 0.00%
YMR310C 51 vonMering 7 1 | ribosomal proteins 5 83.33% 0.00%
YNL122C 6 vonMering 3 1 | aminoacyl-tRNA-synthetases 2 100.00% 0.00%
YORO093C 15 vonMering 3 1 | lipid, fatty acid and isoprenoid metabolism 2 100.00% 0.00%
COS6
(YGR295C) 6 DIP-core 9 1 | protein targeting, sorting and translocation 4 50.00% 50.00%
YALO27W 19 Krogan 9 3 | rRNA processing 3 50.00% 33.33%
YLR455W 19 Krogan 7 2 | rRNA processing 3 60.00% 40.00%
PBY1
(YBR094W) 23 MIPS 6 1 | cellwall 3 60.00% 0.00%
YER084W 5 MIPS 7 2 | vacuolar/lysosomal transport 3 60.00% 20.00%
YPT35
(YHR105W) 5 MIPS 7 2 | nuclear transport 3 60.00% 40.00%
ILM1 1" MIPS 8 2 | DNA repair 3 50.00% 16.67%
(YJR118C) meiotic recombination 3
protein binding 3
IES2
(YNL215W) 7 MIPS 5 1 | transcriptional control 2 50.00% 50.00%
YALO18C 9 DIP 3 1 | protein targeting, sorting and translocation 2 100.00% 0.00%
OLA1
(YBR025C) 8 DIP 9 2 | protein binding 4 57.14% 14.29%
COS4
(YFLOB2W) 22 DIP 5 1 | transport facilities 2 50.00% 50.00%
YFR0O16C 5 DIP 5 1 | DNA conformation modification (e.g. chromatin) 2 50.00% 50.00%
YOR220W 6 DIP 5 2 | protein binding 3 100.00% 0.00%

Table 1. Predicted functions with prediction hit-rates of 50% orh@g according to the strict scheme for yeast proteins tlemtiaannotated in MIPS and
that have degrees higher than four in any of the six yeast 8flanks. The column denoted by “Protein of interest” carga protein of interest for which
the function is predicted. The column denoted by “Degreeitams the degree of a given protein in the correspondingnéf®vork. The column denoted
by “PPI Network” contains the PPI network from which the jgintfunction was derived. The column denoted by “Number otgins in cluster” contains
the total number of proteins in the cluster, including thetgin of interest. The column denoted by “Number of uncfesiproteins in cluster” contains the
number of functionally unclassified proteins in a given tusincluding the protein of interest. The column denotgdMajority (and predicted) function”
contains the common functions amongst at least 50% proiite cluster that are also predicted functions for theginodf interest. The column denoted
by “Number of proteins in cluster with the majority functiocontains the number of nodes in the cluster with the majdtinction. The column denoted by
“Hit-rate” contains the percentage of the total number of@ins in the cluster with the majority function; only the xmaum hit-rate is reported for a protein
of interest. Finally, the column denoted by “Miss-rate” tains the percentage of annotated nodes in the clusterdhattchave a common function with any
other annotated node in the cluster.

Signatures of proteins bellonging to the TP53 cluster
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Number of Number of ::loTet:r?; ?rt
Protein of PPI R unclassified I . . . Hit- Miss-
interest Degree Network proteins in proteins in Maijority (and predicted) function cluster_W|_th rate rate
cluster the majority
cluster .
function
PWP1
(YLR196W) 22 vonMering 23 1 TRANSCRIPTION 17 77.27% 0.00%
STO1 PROTEIN WITH BINDING FUNCTION OR COFACTOR
(YMR125W2) 42 vonMering 6 1 REQUIREMENT (structural or catalytic) 5 100.00% | 0.00%
PROTEIN FATE (folding, modification, destination) 4
TRANSCRIPTION 3
OLA1
(YBR025C) 10 vonMering 3 1 CELL RESCUE, DEFENSE AND VIRULENCE 2 100.00% | 0.00%
YMRO074C 6 vonMering 3 1 PROTEIN SYNTHESIS 2 100.00% | 0.00%
YMR310C 51 vonMering 7 1 PROTEIN SYNTHESIS 5 83.33% 0.00%
YNL122C 6 vonMering 3 1 PROTEIN SYNTHESIS 2 100.00% | 0.00%
YOR093C 15 vonMering 3 1 METABOLISM 2 100.00% | 0.00%
CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
COsS6 6 DIP-core 9 1 TRANSPORT ROUTES 6 75.00% 12.50%
(YGR295C) PROTEIN FATE (folding, modification, destination) 5
YALO27W 19 Krogan 9 3 TRANSCRIPTION 4 66.67% 0.00%
PROTEIN WITH BINDING FUNCTION OR COFACTOR
REQUIREMENT (structural or catalytic) 4
GDT1
(YBR187W) 6 Krogan 3 1 TRANSCRIPTION 2 100.00% | 0.00%
YLR455W 19 Krogan 7 2 TRANSCRIPTION 4 80.00% 0.00%
PROTEIN WITH BINDING FUNCTION OR COFACTOR
REQUIREMENT (structural or catalytic) 3
PBY1 23 MIPS 6 1 CELL CYCLE AND DNA PROCESSING 3 60.00% 0.00%
(YBR094W) CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
TRANSPORT ROUTES 3
BIOGENESIS OF CELLULAR COMPONENTS 3
SHU2 5 MIPS 4 1 PROTEIN FATE (folding, modification, destination) 2 66.67% 0.00%
(YDRO78C) PROTEIN WITH BINDING FUNCTION OR COFACTOR
REQUIREMENT (structural or catalytic) 2
YER084W CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
5 MIPS 7 2 TRANSPORT ROUTES 4 80.00% 20.00%
PROTEIN FATE (folding, modification, destination) 3
YPT35 5 MIPS 7 2 PROTEIN FATE (folding, modification, destination) 3 60.00% 0.00%
(YHR105W) CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
TRANSPORT ROUTES 3
EAF6
(YJR082C) 16 MIPS 13 2 TRANSCRIPTION 6 54.55% 9.09%
ILM1
(YJR118C) 1 MIPS 8 2 CELL CYCLE AND DNA PROCESSING 4 66.67% 0.00%
YKLO61W 7 MIPS 4 1 METABOLISM 2 66.67% 33.33%
RAD33 5 MIPS 9 2 PROTEIN FATE (folding, modification, destination) 4 57.14% 14.29%
(YML011C) CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
TRANSPORT ROUTES 4
IES2
(YNL215W) 7 MIPS 5 1 CELL CYCLE AND DNA PROCESSING 3 75.00% 0.00%
SGT2
(YOR007C) 5 MIPS 10 1 TRANSCRIPTION 5 55.56% 0.00%
YPR0O84W CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
6 MIPS 4 2 TRANSPORT ROUTES 2 100.00% | 0.00%
YALO18C 9 DIP 3 1 PROTEIN FATE (folding, modification, destination) 2 100.00% | 0.00%
CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
TRANSPORT ROUTES 2
ulP3
(YARO27W) 38 DIP 5 2 INTERACTION WITH THE ENVIRONMENT 2 66.67% 33.33%
YAR028W CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
11 DIP 3 1 TRANSPORT ROUTES 2 100.00% | 0.00%
OLA1 PROTEIN WITH BINDING FUNCTION OR COFACTOR
(YBR025C) 8 DIP 9 2 REQUIREMENT (structural or catalytic) 6 85.71% 0.00%
YDL0O89W 8 DIP 4 2 PROTEIN FATE (folding, modification, destination) 2 100.00% | 0.00%
YEL068C 5 DIP 6 3 CELL CYCLE AND DNA PROCESSING 2 66.67% 0.00%
COs4 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
(YFLO62W) 22 DIP 5 1 TRANSPORT ROUTES 3 75.00% 25.00%
YFR016C 5 DIP 5 1 CELL CYCLE AND DNA PROCESSING 3 75.00% 0.00%
BIOGENESIS OF CELLULAR COMPONENTS 3
YHR140W 61 DIP 16 2 METABOLISM 10 71.43% 7.14%
YET1 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
(YKLO65C) 51 DIP 34 4 TRANSPORT ROUTES 16 53.33% 0.00%
YLLO23C CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
22 DIP 17 2 TRANSPORT ROUTES 10 66.67% 0.00%
RAD33
(YMLO11C) 5 DIP 9 3 METABOLISM 4 66.67% 0.00%
YNLO92W 29 DIP 3 1 METABOLISM 2 100.00% | 0.00%
PRM1 6 DIP 4 1 METABOLISM 2 66.67% 33.33%
(YNL279W) BIOGENESIS OF CELLULAR COMPONENTS 2
YOR164C 6 DIP 6 2 BIOGENESIS OF CELLULAR COMPONENTS 3 75.00% 25.00%
YOR220W PROTEIN WITH BINDING FUNCTION OR COFACTOR
6 DIP 5 2 REQUIREMENT (structural or catalytic) 3 100.00% | 0.00%
CELLULAR TRANSPORT, TRANSPORT FACILITIES AND
TRANSPORT ROUTES 2
INTERACTION WITH THE ENVIRONMENT 2
BIOGENESIS OF CELLULAR COMPONENTS 2

Table 2. Predicted functions with prediction hit-rates higher t&®%0 according to the flexible scheme for yeast proteins tteatimannotated in MIPS and
that have degrees higher than four in any of the six yeast fanks. The columns have the same meaning as in Table 1.
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