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ABSTRACT
Motivation: Proteins are essential macromolecules of life and thus
understanding their function is of great importance. The number of
functionally unclassified proteins is large even for simple and well
studied organisms such as baker’s yeast. Methods for determining
protein function have shifted their focus from targeting specific pro-
teins based solely on sequence homology to analyses of the entire
proteome based on protein-protein interaction (PPI) networks. Since
proteins interact to perform a certain function, analyzing structural
properties of PPI networks may provide useful clues about the biologi-
cal function of individual proteins, protein complexes they participate
in, and even larger subcellular machines.
Results: We design a sensitive graph theoretic method for comparing
local structures of node neighborhoods that demonstrates that in PPI
networks, biological function of a node and its local network structure
are closely related. The method summarizes a proteins local topo-
logy in a PPI network into the vector of graphlet degrees called the
signature of a protein and computes the signature similarities bet-
ween all protein pairs. We group topologically similar proteins under
this measure in a PPI network and show that these protein groups
belong to the same protein complexes, perform the same biological
functions, are localized in the same subcellular compartments, and
have the same tissue expressions. Moreover, we apply our techni-
que on a proteome-scale network data and infer biological function of
yet unclassified proteins demonstrating that our method can provide
valuable guidelines for future experimental research such as disease
protein prediction.
Availability: Data is available upon request.
Contact: natasha@ics.uci.edu

1 INTRODUCTION
The recent technological advances in experimental biologyhave
yielded large amounts of biological network data. One such example
is protein-protein interaction (PPI) networks(or graphs), in which
nodes correspond to proteins and undirected edges represent physi-
cal interactions between them. Since a protein almost neveracts in
isolation, but rather interacts with other proteins in order to perform
a certain function, PPI networks by definition reflect the inter-
connected nature of biological processes. Analyses of PPI networks
may give valuable insight into biological mechanisms and provide
deeper understanding of complex diseases. Defining the relation-
ship between the PPI network topology and biological function and
inferring protein function from it is one of the major challenges in
the post-genomic era (Nabieva et al., 2005; Vazquez et al., 2003;
Schwikowski and Fields, 2000; Hishigaki et al., 2001; Letovsky and
Kasif, 2003; Deng et al., 2003, 2004; Brun et al., 2004).
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1.1 Background
Various approaches for determining protein function from PPI net-
works have been proposed. “Neighborhood-oriented” approaches
observe the neighborhood of a protein to predict its function by
finding the most common function(s) among its neighbors. The
“majority rule” approach considers only nodes directly connected to
the protein of interest (Schwikowski and Fields, 2000). An improve-
ment is made by also observing indirectly connected level-2neigh-
bors of a node (Chua et al., 2006). Furthermore, the functionwith
the highestχ2 value amongst the functions of all “n-neighboring
proteins” is assigned to the protein of interest (Hishigakiet al.,
2001). Other approaches use the idea of shared neighbors (Samanta
and Liang, 2003) or the network flow-based idea (Nabieva et al.,
2005) to determine protein function.

Several global optimization-based function prediction strategies
have also been proposed. Any given assignment of functions to the
whole set of unclassified proteins in a network is given a score,
counting the number of interacting pairs of nodes with no common
function; the functional assignment with the lowest score maximi-
zes the presence of the same function among interacting proteins
(Vazquez et al., 2003). An approach that reduces the computation
requirements of this method has been proposed (Sun et al., 2006).

Cluster-based approaches are exploiting the existence of regions
in PPI networks that contain a large number of connections bet-
ween the constituent proteins. These dense regions are a sign of the
common involvement of those proteins in certain biologicalproces-
ses and therefore are feasible candidates for biological complexes.
The restricted-neighborhood-search clustering algorithm efficiently
partitions a PPI network into clusters identifying known and pre-
dicting unknown protein complexes (King et al., 2004). Similarly,
highly connected subgraphs are used to identify clusters innetworks
(Hartuv and Shamir, 2000), defining the relationship between the
PPI network size and the number and complexity of the identified
clusters, and identifying known protein complexes from these clu-
sters (Pržulj et al., 2004). Moreover, Czekanowski-Dice distance is
used for protein function prediction by forming clusters ofproteins
sharing a high percentage of interactions (Brun et al., 2004).

In addition to protein function prediction, several studies have
investigated associations between diseases and PPI network topo-
logy. Radivojac et al. (Radivojac et al., 2008) have tried toidentify
candidate disease genes from a human PPI network by encoding
each gene in the network based on the distribution of shortest
path lengths to all genes associated with disease or having known
functional annotation. Additionally, Jonsson and Bates (Jonsson
and Bates, 2006) analyzed network properties of cancer genes and
demonstrated greater connectivity and centrality of cancer genes
compared to non-cancer genes indicating an increased central role
of cancer genes within the interactome.



Milenkovi ć and Pržulj

1.2 Approach
We address the above mentioned challenge as follows. First,we
verify that in PPI networks of yeast and human, local network
structure and biological function are closely related. We do this
by designing a method that clusters together nodes of a PPI net-
work with similar topological surroundings and by demonstrating
that it successfully uncovers groups of proteins belongingto the
same protein complexes, carrying out the same biological functions,
being localized in the same subcellular compartments, and having
the same tissue expressions. Since we verify this for PPI networks
of a unicellular and a multicellular eukaryotic organism (yeast and
human, respectively), we hypothesize that PPI network structure
and biological function are related in other eukaryotic organisms
as well. Next, since the number of functionally unclassifiedproteins
is large even for simple and well studied organisms such as baker’s
yeastSaccharomyces cerevisiae(Peña-Castillo and Hughes, 2007),
we describe how to apply our technique to predict membershipin
protein complexes, biological functional groups, and subcellular
compartments of yet unclassified yeast proteins. Additionally, we
show how the method can be used for identification of potential
disease genes.

Our method belongs to the group of clustering-based approaches.
However, compared to other methods that define a cluster as a dense
interconnected region of a network, our method defines it as aset
of nodes with similar topologicalsignatures(defined below). Thus,
nodes belonging to the same cluster do not need to be connected or
belong to the same part of the network.

2 METHODS
Our new measure of node similarity generalizes the degree ofa
node, which counts the number of edges that the node touches,into
the vector ofgraphlet degrees, counting the number of graphlets that
the node touches;graphletsare small connected non-isomorphic
induced subgraphs of a large network (Pržulj et al., 2004) (see
Figure 1). As opposed topartial subgraphs (e.g., networkmotifs
(Milo et al., 2002)), graphlets must beinduced, i.e., they must con-
tain all edges between the nodes of the subgraph that are present
in the large network. We count the number of graphlets touching
a node for all 2-5-node graphlets, denoted byG0, G1, . . ., G29

in Figure 1; counts involving larger graphlets become computatio-
nally infeasible for large networks. Clearly, the degree ofa node
is the first coordinate in this vector, since an edge (graphlet G0) is
the only 2-node graphlet. We call this vector thesignatureof a node.
For example, an outer (black) node in graphletG9 touches graphlets
G0, G1, G3, andG9 once, and it touches no other graphlets. It is
topologically relevant to distinguish between nodes touching a 3-
node linear path (graphletG1) at an end, or at the middle node; we
provide a mathematical formulation of this phenomenon for all gra-
phlets with 2-5 nodes. This is summarized byautomorphism orbits
(or justorbits, for brevity): by taking into account the “symmetries”
between nodes of a graphlet, there are 73 different orbits for 2-5-
node graphlets, numerated from 0 to 72 in Figure 1 (see (Pržulj,
2006) for details). Thus, the signature vector of a node has 73 coor-
dinates. For example, a node at orbit 15 in graphletG9 touches
orbits 0, 1, 4, and 15 once, and all other orbits zero times. Thus, its
signature will have 1s in the 0th, 1st, 4th, and 15th coordinate, and
0s in the remaining 69 coordinates.
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Fig. 1. The thirty 2-, 3-, 4-, and 5-node graphletsG0, G1, . . . , G29

and their automorphism orbits0, 1, 2, . . . , 72. In a graphletGi, i ∈
{0, 1, . . . 29}, nodes belonging to the same orbit are of the same shade
(Pržulj, 2006).

We compute node signature similarities as follows. We definea
73-dimensional vectorW containing the weightswi corresponding
to orbitsi ∈ {0, . . . , 72}. We assign different weights to different
orbits for the reasons illustrated below. For example, the differences
in orbit 0 (i.e., in the degree) of two nodes will automatically imply
the differences in all other orbits for these nodes, since all orbits con-
tain, i.e., “depend on”, orbit0. Similarly, the differences in orbit3
(the triangle) of two nodes will automatically imply the differences
in all other orbits of the two nodes that contain orbit3, such as
orbits 14 and 72. We generalize this to all orbits. Thus, we need
to assign higher weights to “important” orbits, those that are not
affected by many other orbits, and lower weights to “less import-
ant” orbits, those that depend on many other orbits. By doingso,
we remove the redundancy of an orbit contained in other orbits. To
compute weightswis, each orbiti is assigned an integeroi that is
obtained simply by counting the number of orbits that affectorbit i.
We consider that each orbit affects itself. For example, fororbit 15,
o15 = 4, since it is affected by orbits 0, 1, 4, and itself; similarly, o44

= 5, since orbit 44 is affected by orbits 0, 2, 3, 11, and itself. We
computewi as a function ofoi as follows:

wi = 1 −
log(oi)

log(73)
.

We apply a logarithm function toois to assign higher weights
wis to the more “important” orbits (those that are not affectedby
many other orbits). Also, since the maximum value that anoi can
take is73 (for 2-5-node graphlets), we dividelog(oi) by log(73) to
scale it to [0, 1]. Since an orbit dependency countoi of 1 indicates
that no other orbits affect orbiti (i.e., this orbit is of the highest
importance), we invert this scaled value of orbit dependencies to
assign the highest weightwi of 1 to orbit i with oi = 1. Clearly,
wi ∈ [0, 1] for all i ∈ {0, . . . , 72} and the formula correctly assigns
lower weights to less important orbits.

For a nodeu, we denote byui the ith coordinate of its signature
vector, i.e.,ui is the number of times nodeu touches orbiti. We
define the distanceDi(u, v) between theith orbits of nodesu and
v as:

Di(u, v) = wi ×
|log(ui + 1) − log(vi + 1)|

log(max{ui, vi} + 2)
.

2
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We uselog in the numerator because theith coordinates of signa-
ture vectors of two nodes can differ by several orders of magnitude
and the distance measure should not be entirely dominated bythese
large values. Also, by using these logarithms, we take into account
the relative difference betweenui andvi instead of the absolute dif-
ference. We add 1 toui andvi in the numerator of the formula for
Di(u, v) to prevent the logarithm function to go to infinity. We scale
Di to be in [0, 1) by dividing with the value of the denominator in
the formula forDi(u, v). We add 2 in the denominator of the for-
mula forDi(u, v) to prevent it from being infinite or 0. We define
the total distanceD(u, v) between nodesu andv as:

D(u, v) =

P

72

i=0
Di

P

72

i=0
wi

.

Clearly, the distanceD(u, v) is in [0, 1), where distance 0 means
the identity of signatures of nodesu andv. Finally, thesignature
similarity, S(u, v), between nodesu andv is:

S(u, v) = 1 − D(u, v).

For example, the two outer (black) nodes at orbit 15 in graphlet G9

have the same signatures, and thus, their total distance is 0and their
signature similarity is 1.

We form clusters in a PPI network as follows. For a node of inte-
rest, we construct a cluster containing that node and all nodes in a
network that are similar to it; we repeat this for each node inthe
PPI network. According to the signature similarity metric,nodesu
andv will be in the same cluster if their signature similarityS(u, v)
is above a chosen threshold. We choose an experimentally determi-
ned thresholds of 0.9-0.95. For thresholds above these values, only a
few small clusters are obtained, especially for smaller PPInetworks,
indicating too high stringency in signature similarities.For thres-
holds bellow 0.9, the clusters are very large, especially for larger
PPI networks, indicating a loss of signature similarity. Toillustrate
signature similarities and our choices of signature similarity thres-
holds, in Figure 2 we present the signature vectors of yeast proteins
in the PPI network of (Krogan et al., 2006) with signature similari-
ties above 0.90 (Figure 2 A) and below 0.40 (Figure 2 B). Signature
vectors of proteins with high signature similarities follow the same
pattern, while those of proteins with low signature similarities have
very different patterns.

3 RESULTS AND DISCUSSION

3.1 Results
We apply our method to sixS. cerevisiaePPI networks and three
humanPPI networks. TheS. cerevisiaePPI networks are henceforth
denoted by “vonMering-core” (von Mering et al., 2002), “vonMe-
ring” (von Mering et al., 2002), “Krogan” (Krogan et al., 2006),
“DIP-core” (Deane et al., 2002), “DIP” (Xenarios et al., 2002),
and “MIPS” (Mewes et al., 2002). “vonMering-core” containsonly
high-confidence interactions described by von Mering et al.(von
Mering et al., 2002); it contains 2,455 interactions amongst 988 pro-
teins obtained mainly by tandem affinity purification (TAP) (Rigaut
et al., 1999; Gavin et al., 2002) and High-Throughput Mass Spec-
tromic Protein Complex Identification (HMS-PCI) (Ho et al.,2002).
“vonMering” is the PPI network containing the top 11,000 high-,

medium-, and low-confidence interactions amongst 2,401 prote-
ins described by von Mering et al. (von Mering et al., 2002);
the dominant techniques used to identify PPIs in this network are
TAP, HMS-PCI, gene neighborhood, and yeast-two-hybrid (Y2H).
“Krogan” is the “core” PPI data set containing 7,123 interactions
amongst 2,708 proteins obtained by TAP experiments as descri-
bed by Krogan et al. (Krogan et al., 2006). “DIP-core” is the more
reliable subset of the yeast PPI network from DIP (Xenarios et al.,
2002) as described by Deane et al. (Deane et al., 2002); it con-
tains 5,174 interactions amongst 2,210 proteins. “DIP” and“MIPS”
are the yeast PPI networks downloaded in November 2007 from
DIP (Xenarios et al., 2002) and MIPS (Mewes et al., 2002) data-
bases, respectively; they contain 17,201 and 12,525 interactions
amongst 4,932 and 4,786 proteins, respectively. The three human
PPI networks that we analyze are henceforth denoted by “BIO-
GRID” (Stark et al., 2006), “HPRD” (Peri et al., 2004), and “Rual”
(Rual et al., 2005). “BIOGRID” and “HPRD” are the human PPI
networks downloaded in November 2007 from “BIOGRID” (Stark
et al., 2006) and “HPRD” (Peri et al., 2004) databases, respec-
tively; they contain 23,555 and 34,119 interactions amongst 7,941
and 9,182 proteins, respectively. “Rual” is the human PPI network
containing 3,463 interactions amongst 1,873 proteins, as described
by Rual et al. (Rual et al., 2005). We removed all self-loops and
multiple edges from each of the PPI networks that we analyzed.

The entire PPI network is taken into account when computing
signature similarities between pairs of nodes (i.e., proteins) and for-
ming clusters (see section 2). However, here we only report the
results of analyzing proteins involved in more than four interacti-
ons. We discard poorly connected proteins from our clustersbecause
they are more likely to be involved in noisy interactions. Similar
was done by Brun et al. (Brun et al., 2004). Also, we discard very
small clusters containing less than three proteins. For theremaining
clusters, we search for commonprotein properties: in yeast PPI
networks, we look for the common protein complexes, functional
groups, and subcellular localizations (described in MIPS (Mewes
et al., 2002)) of proteins belonging to the same cluster; in human
PPI networks, we look for the common biological processes, cel-
lular components, and tissue expressions (described in HPRD (Peri
et al., 2004)) of proteins in the same cluster.

Classification schemes and the data for the three protein pro-
perties that we analyzed in yeast PPI networks were downloaded
from MIPS database (Mewes et al., 2002) in November 2007. For
each of these three classification schemes (corresponding to protein
complexes, biological functions, and subcellular localizations), we
define two levels of strictness: thestrict scheme uses the most spe-
cific MIPS annotations, and theflexibleone uses the least specific
ones. For example, for a protein complex “category” annotated by
510.190.900in MIPS, the strict scheme returns510.190.900, and
the flexible one returns510. Classification schemes and the data for
the three protein properties that we analyzed in human PPI networks
(corresponding to biological processes, cellular components, and
tissue expressions) were downloaded from HPRD database (Peri
et al., 2004) in November 2007. In order to test if our method clu-
sters together proteins having the same protein properties, we refine
our clusters by removing the nodes that are not contained in any of
the yeast MIPS protein complex, biological function, or subcellular
localization categories, or in any of the human HPRD biologi-
cal process, cellular component, or tissue expression categories,
respectively.

3
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(A) (B)

Fig. 2. Signature vectors of proteins with signature similarities: (A) above 0.90; and (B) below 0.40. The 73 orbits are presented on the abscissa and the
numbers of times that nodes touch a particular orbit are presented on the ordinate in log scale. In the interest of the aesthetics of the plot, we added 1 to all
orbit frequencies to avoid the log-function to go to infinityin the case of orbit frequencies of 0.

Fig. 3. An example of a three-node cluster, consisting of proteins RPO26,
SMD1, and SMB1. The categories of biological functions thatthe proteins
belong to are presented bellow the protein names.

In our clusters, we measure the size of the largest common cate-
gory for a given protein property as the percentage of the cluster
size; we refer to it as thehit-rate. That is, we compute the hit-rate
of a clusterC asHit(C) = max

Np

N
, whereNp is the number of

nodes inC having a given protein propertyp, andN is the total
number of nodes inC. Clearly, a yeast protein can belong to more
than one protein complex, be involved in more than one biological
function, or belong to more than one subcellular compartment (and
similar holds for human proteins). Thus, it is possible to have an
overlap between categories, as well as more than one largestcate-
gory in a cluster for a given protein property. We illustratethis for
biological functions in the cluster presented in Figure 3, consisting
of yeast proteins RPO26, SMD1, and SMB1. According to the strict
scheme, protein SMD1 is in the common biological function cate-
gory with protein RPO26 (16.03), as well as with protein SMB1
(11.04.03.01). Thus, there are two largest common biological func-
tion categories. The size of the largest common biological function
category in the cluster is two and the hit-rate is 2/3=67%. For the
flexible scheme, all three proteins are in one common biological
function category (11) and thus, the size of the largest common
biological function category is three and the hit-rate is 3/3=100%.

We also define themiss-rateas the percentage of the nodes in
a cluster that are not in any common category with other nodes
in the cluster, for a given protein property. That is, we compute
the miss-rate of a clusterC asMiss(C) =

Up

N
, whereUp is the

number of nodes inC not sharing any of their protein properties
p with any other node inC, andN is the total number of nodes

in C. For example, in Figure 3, according to the strict scheme,
proteins RPO26 and SMB1 are in a common biological function
category with SMD1, but they themselves are not in any common
biological function category. Although not all three proteins are in
the same biological function category and the hit-rate is only 67%,
the miss-rate is 0/3=0%, since every node is in at least one com-
mon biological function category with another node in the cluster.
Clearly, the miss-rate for the flexible scheme is also 0/3=0%, since
the three proteins are in the same biological function category (11)
with respect to this scheme. Thus, if a protein belongs to several
different categories for a given protein property (which isexpected),
the hit-rate in the cluster might be lower than 100% (as illustrated
in Figure 3). Therefore, miss-rates are additional indicators of the
accuracy of our approach.

For each of the six yeast PPI networks, the three yeast protein
properties, and the two schemes, we measure the number of clusters
(out of the total number of clusters in a network) having given hit-
and miss-rates. We bin the hit- and miss-rates in incrementsof 10%.
The results for the flexible scheme are presented in Figure 4.For
subcellular localizations, in vonMering-core network, 86% of the
clusters have hit-rate above 90%; for the remaining five networks,
65% of clusters have hit-rates above 60% (Figure 4 A). For allnet-
works, miss-rates for 72% of clusters are bellow 10% (Figure4 B).
Similarly, for biological functions, the miss-rates in allsix networks
are under 10% for 81% of the clusters (Figure 4 D). The hit-rates for
biological functions are above 60% for 79% of the clusters inboth
von Mering networks; in the remaining four networks, 57% of the
clusters have hit-rates above 50% (Figure 4 C). Finally, forprotein
complexes, 47% clusters in vonMering-core, vonMering, andDIP-
core networks have hit-rates above 60%, 36% of clusters in Krogan
and MIPS networks have hit-rates above 50%, and 30% of clusters
in DIP network have hit-rates above 40% (Figure 4 E). Miss-rates
for protein complexes are bellow 10% for 39% of the clusters in
both von Mering networks and in DIP-core network; in the remai-
ning three networks, 33% of the clusters have miss-rates bellow 39%
(Figure 4 F).

Similarly, for each of the three human PPI networks and their
three protein properties that we analyzed, we measure the number
of clusters (out of the total number of clusters in a network)having

4
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(A) (B)

(C) (D)

(E) (F)

Fig. 4. The results of applying our method to the six yeast PPI networks (vonMering-core, vonMering, Krogan, DIP-core, DIP, andMIPS) and the three
protein properties (subcellular localizations, biological functions, and protein complexes) in accordance with theflexible scheme: (A) hit-rates for subcellular
localizations; (B) miss-rates for subcellular localizations; (C) hit-rates for biological functions; (D) miss-rates for biological functions; (E) hit-rates for protein
complexes; (F) miss-rates for protein complexes.

given hit- and miss-rates. The results are presented in Figure 5. For
cellular components, in all three human PPI networks, 86% ofthe
clusters have hit-rates above 50% (Figure 5 A). Miss-rates for 68%
of clusters in BIOGRID and HPRD networks are bellow 10%, while
in Rual network 76% of clusters have miss-rates bellow 29% (Figure
5 B). Similarly, for tissue expressions, hit-rates are above 50% for
74% of clusters in BIOGRID and HPRD networks, and for 98% of

clusters in Rual network, respectively (Figure 5 C). Miss-rates are
lower than 10% for 61% of clusters in BIOGRID and HPRD net-
works, and for 48% of clusters in Rual network, respectively(Figure
5 D). Finally, for biological processes, hit-rates are above 50% for
55% of clusters in BIOGRID network, for 45% of clusters in HPRD
network, and for 33% of clusters in Rual network, respectively.
(Figure 5 E). Miss-rates are bellow 29% for 58% of the clusters in

5
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BIOGRID network and for 71% of the clusters in HPRD network;
in Rual network, 44% of the clusters have miss-rates bellow 39%
(Figure 5 F).

To evaluate the effect of noise in PPI networks to the accuracy
of our method, we compare the results for the high-confidence
vonMering-core network and the lower-confidence vonMeringnet-
work (Figure 4). As expected, clusters in the more noisy network
have lower hit-rates compared to the high-confidence network.
However, low miss-rates are still preserved in clusters of both net-
works for all three protein properties, indicating the robustness of
our method to noise present in PPI networks.

Thus far, we demonstrated that our method identifies groups of
nodes in PPI networks having common protein properties. Our
technique can also be applied to predict protein propertiesof yet
unclassified proteins by forming a cluster of proteins that are simi-
lar to the unclassified protein of interest and assigning it the most
common properties of the classified proteins in the cluster.We do
this for all 115 functionally unclassified yeast proteins from MIPS
that have degrees higher than four in any of the six yeast PPI net-
works that we analyzed. In Tables 1 and 2, we present the predicted
functions for proteins with prediction hit-rates of 50% or higher
according to the strict and the flexible scheme, respectively. The
full data set with functional prediction hit-rates lower than 50%
is available upon request. Note that a yeast protein can belong to
more than one yeast PPI network that we analyzed. Thus, biolo-
gical functions that such proteins perform can be predictedfrom
clusters derived from different yeast PPI networks. We observed an
overlap of the predicted protein functions obtained from multiple
PPI networks for the same organism, additionally verifyingthe cor-
rectness of our method. Furthermore, there exists overlap between
our protein function predictions and those of others (Vazquez et al.,
2003).

Finally, we survey the literature and verify that our methodsuc-
cessfully predicts biological functions of the following nine proteins
from Tables 1 and 2. Our method predicts that protein PWP1 is
involved in rRNA processing; this is confirmed by SGD (Cherry
et al., 1998) and (Zhang et al., 2004). We also predict that protein
IES2 is involved in transcriptional control; this functionis veri-
fied by (Xu et al., 2007; Svaren et al., 1994; Karnitz et al., 1990).
Human OLA1 has been shown to define an ATPase subfamily in
the Obg family of GTP-binding proteins (Koller-Eichhorn etal.,
2007) indicating that yeast OLA1 might also be involved in protein
binding, as predicted by our method. Our method predicts twofunc-
tions for protein STO1: protein fate (folding), the confirmation of
which is indicated by (Grishchuk and McIntosh, 1999), and binding
function, the confirmation of which is indicated in SGD (Cherry
et al., 1998). Our method correctly predicts that YFR016c isinvol-
ved in biogenesis of cellular components, since protein encoded
by YFR016c interacts with Spa2p that is involved in cytokinesis
and cell wall morphogenesis (Shih et al., 2005). It also predicts
that YPT35 is involved in cellular transport, transport facilities
and transport routes; SGD confirms that YPT35 binds to proteins
involved in ER-Golgi or vesicular transport. For protein ILM1, our
method predicts DNA repair function; SGD suggests that ILM1
may be involved in mitochondrial DNA maintenance and required
for slowed DNA synthesis–induced filamentous growth. We predict
that protein YET1 is involved in cellular transport; this function is
also indicated in SGD where YET1 is described as an endoplasmic
reticulum transmembrane protein and a homolog of human BAP31

protein that is involved in vesicular transport pathways (Wakana
et al., 2008). Finally, our method predicts that protein PRM1 is
involved in biogenesis of cellular components and SGD suggests
that it is involved in membrane fusion during mating.

3.2 Discussion
To our knowledge, this is the first study that relates the PPI net-
work structure to all of the following: protein complexes, biological
functions, and subcellular localizations for yeast, and cellular com-
ponents, tissue expressions, and biological processes forhuman.
Starting with the topology of PPI networks of different organisms
that are of different sizes and are originating from a wide spectrum
of small-scale and high-throughput PPI detection techniques, our
method identifies clusters of nodes sharing common protein proper-
ties. Our method accurately uncovers groups of nodes belonging to
the same protein complexes in the vonMering-core network: 44% of
clusters have 100% hit-rate according to the flexible scheme. This
additionally validates our method, since PPIs in this network are
obtained mainly by TAP (Rigaut et al., 1999; Gavin et al., 2002)
and HMS-PCI (Ho et al., 2002), which are known to favor protein
complexes.

Our node similarity measure is highly constraining, since we take
into account not only a node’s degree, but also additional 72“gra-
phlet degrees” (see section 2). Since the number of graphlets onn

nodes increases exponentially withn, we use 2-5-node graphlets
(see Figure 1). However, our method is easily extendible to include
larger graphlets, but this would increase the computational comple-
xity; the complexity is currentlyO(|V |5) for a graphG(V, E), since
we search for graphlets with up to5 nodes. Nonetheless, since our
algorithm is “embarrassingly parallel” (i.e., can easily be distributed
over a cluster of machines), extending it to larger graphlets is fea-
sible. In addition to the design of the signature similaritymeasure
as a number in (0, 1], this makes our technique usable for larger
networks.

3.3 Future Directions
Our method can also be applied to disease genes. We consider the set
of genes implicated in genetic diseases available from HPRD(Peri
et al., 2004). To increase coverage of PPIs, the human PPI network
that we analyze is the union of the human PPI networks from HPRD,
BIOGRID, and Rual, which consists of 41,755 unique interactions
amongst 10,488 different proteins. There are 1,491 diseasegenes in
this PPI network out of which 71 are cancer genes. If graph topology
is related to function, then we might expect that genes connected to
cancer might have similar graphlet degree signatures. To test this
hypothesis, we looked for all proteins with a signature similarity
of 0.95 or better when compared to protein TP53. The resulting
cluster contains 10 proteins, eight of which are disease genes; six
of these eight disease genes are cancer genes (TP53, EP300, SRC,
BRCA1, EGFR, and AR). The remaining two proteins in the cluster
are SMAD2 and SMAD3 which are members of TGF-beta signa-
ling pathway whose deregulation contributes to the pathogenesis of
many diseases including cancer (Gambichler et al., 2007). The stri-
king signature similarity of this 10-node cluster is depicted in Figure
6. To further increase our confidence that local graph topology is
related to function, we verified that decreasing the similarity thres-
hold increases the number of nodes in the cluster but decreases the
proportion of those nodes that are disease-related. For example, at
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(A) (B)

(C) (D)

(E) (F)

Fig. 5. The results of applying our method to the three human PPI networks (BIOGRID, HPRD, and Rual) and the three protein properties (cellular com-
ponents, tissue expressions, and biological processes): (A) hit-rates for cellular components; (B) miss-rates for cellular components; (C) hit-rates for tissue
expressions; (D) miss-rates for tissue expressions; (E) hit-rates for biological processes; (F) miss-rates for biological processes.

similarity 0.90, the cluster consists of 39 genes but more than half
(21) are non-disease related. Of the 18 disease-related genes, only 8
are cancer genes. In other words, decreasing the threshold from 0.95
to 0.90 barely increases the number of cancer genes but quadruples
the total number of matching genes, thus decreasing the specificity
by about a factor of 3. A more complete analysis of how topologi-
cal clustering relates to diseases will be published in a forthcoming
paper.

4 CONCLUSIONS
We present a new graph theoretic method for detecting the relati-
onship between local topology and function in real-world networks.
We apply it to proteome-scale PPI networks and demonstrate the
link between the topology of a proteins neighborhood in the network

and its membership in protein complexes, functional groups, and
subcellular compartments for yeast, and in cellular components, tis-
sue expressions, and biological processes for human. Additionally,
we demonstrate that our method can be used to predict biological
function of uncharacterized proteins and possibly to identify can-
didate cancer genes. Thus, this study provides evidence that the
graphlet representation of a PPI network has important implicati-
ons for protein function prediction and gene disease association.
Moreover, the method can be applied to different types of biological
and other real-world networks, give insight into complex biolo-
gical mechanisms and provide guidelines for future experimental
research.
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Table 1. Predicted functions with prediction hit-rates of 50% or higher according to the strict scheme for yeast proteins that are unannotated in MIPS and
that have degrees higher than four in any of the six yeast PPI networks. The column denoted by “Protein of interest” contains a protein of interest for which
the function is predicted. The column denoted by “Degree” contains the degree of a given protein in the corresponding PPInetwork. The column denoted
by “PPI Network” contains the PPI network from which the protein function was derived. The column denoted by “Number of proteins in cluster” contains
the total number of proteins in the cluster, including the protein of interest. The column denoted by “Number of unclassified proteins in cluster” contains the
number of functionally unclassified proteins in a given cluster, including the protein of interest. The column denoted by “Majority (and predicted) function”
contains the common functions amongst at least 50% proteinsin the cluster that are also predicted functions for the protein of interest. The column denoted
by “Number of proteins in cluster with the majority function” contains the number of nodes in the cluster with the majority function. The column denoted by
“Hit-rate” contains the percentage of the total number of proteins in the cluster with the majority function; only the maximum hit-rate is reported for a protein
of interest. Finally, the column denoted by “Miss-rate” contains the percentage of annotated nodes in the cluster that do not have a common function with any
other annotated node in the cluster.

Fig. 6. Signature vectors of proteins belonging to the TP53 cluster. The clu-
ster is formed using the threshold of 0.95. The axes have the same meaning
as in Figure 2.
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