Maximal green sequences of minimal mutation-infinite quivers

John Lawson
joint with Matthew Mills

Durham University

Oct 2016
Theorem. All minimal mutation-infinite quivers have a maximal green sequence.

Theorem. Any cluster algebra generated by a minimal mutation-infinite quiver is equal to its upper algebra.

Theorem. The different move-classes of minimal mutation-infinite quivers belong to different mutation-classes (mostly...).
(Cluster) quiver — directed graph with no loops or 2-cycles.

Mutation μ_k at vertex k:

- Add arrow $i \to j$ for each path $i \to k \to j$
- Reverse all arrows adjacent to k
- Remove maximal collection of 2-cycles

Induced subquiver — obtained by removing vertices.
Quivers and mutations

Quiver Q is **mutation-equivalent** to P if there are mutations taking Q to P.

Mut(Q) is the **mutation class** of Q containing all quiver mutation-equivalent to Q.

Q is **mutation-finite** if its mutation class is finite. Otherwise it is **mutation-infinite**.

Q is **minimal mutation-infinite** if every induced subquiver is mutation-finite.
MMI classes

Minimal mutation-infinite quivers classified into move-classes [L ’16], with representatives:

• Hyperbolic Coxeter simplex representatives
• Double arrow representatives
• Exceptional representatives
Hyperbolic Coxeter simplex diagrams
Double arrow representatives
Exceptional type representatives
A framed quiver \hat{Q} is constructed from quiver Q, by adding an additional frozen vertex \hat{i} for each vertex i in Q and a single arrow $i \to \hat{i}$.

Framed quivers
A mutable vertex i in \hat{Q} is **green** if there are no arrows $\hat{j} \rightarrow i$.

A mutable vertex i in \hat{Q} is **red** if there are no arrows $i \rightarrow \hat{j}$.

Theorem (Derksen-Weyman-Zelevinsky ’10). Any mutable vertex in a quiver is red or green.
Maximal green sequences

Assume a quiver Q has vertices labelled $(1, \ldots, n)$.

A **mutation sequence** is a sequence of vertices $i = (i_1, \ldots, i_k)$ corresponding to mutating first in vertex i_1, then i_2 and so on.

A **green sequence** is a mutation sequence where every mutation is at a green vertex.

A **maximal green sequence** is a green sequence where every mutable vertex in the resulting quiver is red.
MGS example
Some results

Proposition (Brüstle-Dupont-Perotin ’14). If i is a maximal green sequence for Q then $\mu_i(Q)$ is isomorphic to Q.

The **induced permutation** of a maximal green sequence is the permutation σ such that $\sigma(\mu_i(Q)) = Q$.

Theorem (BPS ’14). Any acyclic quiver has a maximal green sequence.

Proposition (BPS ’14). A quiver Q has a maximal green sequence if and only if Q^{op} has a maximal green sequence.
More results

Proposition (Muller ’15). If Q has a maximal green sequence, every induced subquiver has a maximal green sequence.

Proposition (Muller ’15). Having a maximal green sequence is not mutation-invariant.

Proposition (Mills ’16). If Q is a mutation-finite quiver, then provided Q does not arise from a once-punctured closed surface and is not mutation-equivalent to the type X_7 quiver, then Q has a maximal green sequence.
Lemma (Brüstle-Hermes-Igusa-Todorov ’15). If $i = (i_1, i_2, \ldots, i_\ell)$ is a maximal green sequence of Q with induced permutation σ, then $(i_2, \ldots, i_\ell, \sigma^{-1}(i_1))$ is a maximal green sequence for the quiver $\mu_{i_1}(Q)$ with the same induced permutation.

Lemma. If $i = (i_1, \ldots, i_{\ell-1}, i_\ell)$ is a maximal green sequence of Q with induced permutation σ, then $(\sigma(i_\ell), i_1, \ldots, i_{\ell-1})$ is a maximal green sequence for the quiver $\mu_{\sigma(i_\ell)}(Q)$ with the same induced permutation.
Direct sums of quivers
[Garver-Musiker ’14]

Given two quivers P and Q with k-tuples (a_1, \ldots, a_k) of vertices of P, (b_1, \ldots, b_k) of vertices of Q, the **direct sum**

$$P \oplus_{(a_1, \ldots, a_k)} (b_1, \ldots, b_k) Q$$

is the quiver obtained from the disjoint union of P and Q, with additional arrows $a_i \to b_i$ for each i.

This is a **t-coloured direct sum** if t is the number of distinct vertices in (a_i) and there are no repeated arrows $a_i \to b_j$ added.
MGS for direct sums

Theorem (GM '14). If $P = Q \oplus_{(a_1, \ldots, a_k)}^{(b_1, \ldots, b_k)} R$ is a t-colored direct sum, (i_1, \ldots, i_r) is a maximal green sequence for Q, and (j_1, \ldots, j_s) is a maximal green sequence for R, then

$$(i_1, \ldots, i_r, j_1, \ldots, j_s)$$

is a maximal green sequence for P.
Quivers ending in a 3-cycle

Theorem. If Q ends in a 3-cycle and C has a maximal green sequence i_C, then Q has a maximal green sequence (b, i_C, a, b).
Rank 3 MMI quivers
and maximal green sequences

Proposition (Muller '15).
If \(a, b\) and \(c \geq 2\) then \(Q_{a,b,c}\) does not have a maximal green sequence.

Proposition. If any of \(a, b\) or \(c\) are 1, then \(Q_{a,b,c}\) has a maximal green sequence.
Higher ranks

Recall: all mutation-finite quivers have a maximal green sequence, unless they come from a triangulation of a once-punctured closed surface or are mutation-equivalent to X_7.

Lemma. No minimal mutation-infinite quiver contains a subquiver which does not have a maximal green sequence.

Corollary. Every subquiver of a minimal mutation-infinite quiver has a maximal green sequence.
Theorem. If Q is a minimal mutation-infinite quiver of rank at least 4 then Q has a maximal green sequence.

Most have a sink or a source — leaving 192.

Many others are direct sums — leaving 42.

35 of these end in a 3-cycle — leaving 7.
The remaining 7 quivers
Moves are sequences of mutations.

Quivers in the same class must be mutation-equivalent.

But does each move-class belong to a different mutation-class?
Rank of the adjacency matrix is mutation-invariant [Berenstein-Fomin-Zelevinsky ’05].

Determinant of the adjacency matrix is mutation-invariant.

Whether a quiver is mutation-acyclic — and how many acyclic quivers are in the mutation class [Caldero-Keller ’06].
<table>
<thead>
<tr>
<th>Class</th>
<th>rank(B_Q)</th>
<th>No. Acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>4_1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4_2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4_3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4_4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4_5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4_6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5_1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5_2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5_3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5_4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6_1</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>6_2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6_3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6_4</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7_1</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7_2</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>rank(B_Q)</th>
<th>No. Acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7_3</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>7_4</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>8_1</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>8_2</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>8_3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>8_4</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>8_5</td>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>9_1</td>
<td>8</td>
<td>219</td>
</tr>
<tr>
<td>9_2</td>
<td>8</td>
<td>151</td>
</tr>
<tr>
<td>9_3</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9_4</td>
<td>8</td>
<td>55</td>
</tr>
<tr>
<td>9_5</td>
<td>8</td>
<td>95</td>
</tr>
<tr>
<td>9_6</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>10_1</td>
<td>10</td>
<td>225</td>
</tr>
<tr>
<td>10_2</td>
<td>8</td>
<td>138</td>
</tr>
</tbody>
</table>
How can you prove that a quiver is not mutation-equivalent to an acyclic quiver?

Use the idea of admissible quasi-Cartan companions.
A \textbf{quasi-Cartan companion} of a quiver \(Q \) is a symmetric matrix \(A = (a_{i,j}) \) such that \(a_{i,i} = 2 \) and \(a_{i,j} = |b_{i,j}| \) where \(B = (b_{i,j}) \) is the adjacency matrix of \(Q \).

A quasi-Cartan companion of \(Q \) is \textbf{admissible} if for any oriented (resp., non-oriented) cycle \(Z \) in \(Q \), there are an odd (resp., even) number of edges \(\{i,j\} \) in \(Z \) such that \(a_{i,j} > 0 \).

\textbf{Theorem (Seven ‘15).} If \(Q \) is mutation-acyclic, then \(Q \) has an admissible quasi-Cartan companion.
How can you prove a quiver does not have an admissible quasi-Cartan companion?

Proposition (Seven ’11). Two admissible companions of a quiver Q can be obtained from one another by a number of simultaneous sign changes in rows and columns.
Corollary. This quiver is not mutation-acyclic.
Proposition. Each double arrow move-class contains no acyclic quivers.

Each representative is mutation-equivalent to something which contains:

![Diagram](attachment:image.png)
Example

(3, 4, 5, 6)
Proposition. Each exceptional move-class contains no acyclic quivers.

But don’t know if they belong to different mutation-classes to each other or to the double arrow classes.