Regular Expressions

They eat their fiber...
What is a Regular Expression?

Intuition: A regular expression is a series of languages combined with regular operations

- \((0 \cup 1)0^*\)
 - 0 and 1 are shorthand for the sets \{0\} and \{1\}, respectively
 - \((0 \cup 1)\) therefore means \(\{0\} \cup \{1\}\), or \{0,1\}
- \(0^*\) means \{0\}*, the language consisting of any number of 0s.
- Concatenation (\(\circ\)) is often implied, thus: \((0 \cup 1)0^*\) is shorthand for \((0 \cup 1)^0\)
- Other shorthand: | and ?

Definition: R is a regular expression if R is:

1. \(a\) for some \(a\) in the alphabet \(\Sigma\),
2. \(\varepsilon\),
3. \(\emptyset\),
4. \((R_1 \cup R_2)\), where \(R_1\) and \(R_2\) are regular expressions,
5. \((R_1 \circ R_2)\), where \(R_1\) and \(R_2\) are regular expressions, or
6. \((R_1^*)\) where \(R_1\) is a regular expression
What is the meaning of:

∅ vs. ε

If R is a regular expression:

R ∪ ∅
R ∪ ε
R ∪ ∅
A Few Practice Expressions

- $R_1 | R_2$ is shorthand for $R_1 \cup R_2$
 Commonly called “or”
- R^+ is shorthand for (RR^*)
- $R?$ means $(R \cup \varepsilon)$
 Sometimes written $[R]$

Precedence rules:

- Star before Concat
 (also + and ? before Concat)
- Concat before Union
- Parenthesis when needed

Explain the following:

1. $ab|c$
2. $ab*c$
3. $ab|cd*$
4. $a(b|c)*d$
5. $ab?c$
6. \emptyset
7. $abc\emptyset$
8. $\emptyset*$
Theorem Time!

“A language is regular if and only if some regular expression describes it.”

If and only if requires proving in two directions!

Lemma: “If a language is described by a regular expression, then it is regular.”

Lemma: “If a language is regular, then it is described by a regular expression.”
Lemma: Regular Expression to NFA

1. $R = a$, for some $a \in \Sigma$

2. $R = \varepsilon$,

3. $R = \emptyset$

4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions

5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions

6. (R_1^*) where R_1 is a regular expression
Example: \((ab | a)^*\)
Example: \((a \mid b)^*aba\)

Example from Sipser, p. 69
Lemma: NFA to Regular Expression

It’s not that easy...

We need another tool.
Generalized Nondeterministic Finite Automaton (GNFA)

Intuition: Same as NFA, except transition arrows may have any regular expression, rather than being limited to single alphabet characters.
GNFA Restrictions (for convenience)

1. The start state has transition arrows going to every other state but no arrows coming in from any other state.

2. There is only a single accept state, and it has arrows coming in from every other state but no arrows going to any other state. Furthermore, the accept state is not the same as the start state.

3. Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.
NFA to GNFA is Trivially Easy

1. New q_{start} with ε edge to old q_0
2. New q_{accept} with ε edges from old $q \in F$
3. Multiple labels (or multiple edges between same 2 nodes) become single edge labeled as union of previous labels
4. Add \emptyset edges between any nodes that do not already have edges.
Formal Definitions for GNFA

- Very similar to NFA except:
 \[\delta: (Q - \{ q_{\text{accept}} \}) \times (Q - \{ q_{\text{start}} \}) \rightarrow \mathcal{R} \]
- \(\mathcal{R} \) is the collection of all regular expressions over the alphabet \(\Sigma \)
- \(q_{\text{start}} \) and \(q_{\text{accept}} \) are the start and accept states, respectively
- If \(\delta(q_i, q_j) = R \), the arrow from state \(q_i \) to state \(q_j \) has the regular expression \(R \) as its label
- \(G = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}}) \)

A GNFA accepts a string \(w \) in \(\Sigma^* \) if \(w = w_1w_2...w_k \), where each \(w_i \) is in \(\Sigma^* \) and a sequence of states \(q_0, q_1,..., q_k \) exists such that

1. \(q_0 = q_{\text{start}} \) is the start state,
2. \(q_k = q_{\text{accept}} \) is the accept state, and
3. For each \(i \), we have \(w_i \in L(R_i) \), where \(R_i = \delta(q_{i-1}, q_i) \); in other words, \(R_i \) is the expression on the arrow from \(q_{i-1} \) to \(q_i \).
GNFA has k states, where $k \geq 2$.

If $k > 2$, construct an equivalent GNFA with $k-1$ states by removing some q_{rip}.

When $k=2$, the edge from q_{start} to q_{accept} will be the equivalent regular expression.

How hard can that be?
Surgically removing q_{rip}

If, in the old GNFA:

1. q_i goes to q_{rip} with arrow labeled R_1,
2. q_{rip} has a self loop with arrow labeled R_2,
3. q_{rip} goes to q_j with arrow labeled R_3, and
4. q_i goes to q_j with arrow labeled R_4

In the new GNFA, q_i to q_j is labeled:

$$(R_1)(R_2)^*(R_3) \cup (R_4)$$

Proof on pp. 73-74
Formally, GNFA to Regular Expression Using “CONVERT(G)”

CONVERT(G):

1. Let k be the number of states of G.
2. If $k = 2$, return expression R connecting q_{start} and q_{accept}.
3. If $k > 2$, select any $q_{\text{rip}} \in Q - \{q_{\text{start}}, q_{\text{accept}}\}$ and let G' be the GNFA$(Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$, where $Q' = Q - \{q_{\text{rip}}\}$, and for any $q_i \in Q' - \{q_{\text{accept}}\}$ and any $q_j \in Q' - \{q_{\text{start}}\}$, let
 \[
 \delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)
 \]
 for $R_1 = \delta(q_{\text{rip}}, q_{\text{rip}})$, $R_2 = \delta(q_{\text{rip}}, q_{\text{rip}})$, $R_3 = \delta(q_{\text{rip}}, q_{\text{rip}})$, and $R_4 = \delta(q_{\text{rip}}, q_{\text{rip}})$.
4. Return CONVERT(G').
Example 1: 2-state DFA to Regular Expression

Does the resulting regular expression match your intuitive understanding of the original DFA?
Example 2: 3-state DFA to RE

Could you have built this regular expression by just looking at the original DFA?
Proof that \(\text{CONVERT}(G) \) is equivalent to \(G \).

Basis: If \(k = 2 \) states, it has only a single transition, from the \(q_{\text{start}} \) to \(q_{\text{accept}} \), therefore the regular expression label describes all strings that allow \(G \) to get to the accept state. Hence this expression is equivalent to \(G \).

Induction Step: Assume that the claim is true for \(k - 1 \) states and prove the claim is true for \(k \) states.

Assume a sequence of states on \(G \) to recognize \(w \):

\[
q_{\text{start}}, q_1, q_2, \ldots, q_{\text{accept}}
\]
Proof (Continued)

If q_{rip} does not appear in the sequence, then clearly G' will also accept w, because old regular expressions are still present in G' through the union.

If q_{rip} does appear, removing q_{rip} forms an accepting computation for G'. q_i and q_j have a new regular expression transition that describes all strings taking q_i to q_j via q_{rip} on G. So G' accepts w.

Conversely, suppose G' accepts w. As each transition between any two q_i to q_j in G' describes the collection of strings taking q_i to q_j in G, either directly or via q_{rip}, G must also accept w.

Thus, G and G' are equivalent.
What was the point?

Proved Regular Expression \Rightarrow NFA
Proved NFA \Rightarrow Regular Expression

Therefore,
NFA \Leftrightarrow Regular Expression.
Language Paradigms

(So Far...)

2 types of FSM:
- DFA
- NFA
 - GNFA is a variation

Equal in expressive power:
- DFA
- NFA
- Regular Expressions
Methodology

How did we get here?

Can’t just define a new structure, must prove equivalence.

Equivalence must be “iff” (both directions)

Purpose? (WHY???)

Give us multiple tools.

Secondary (pedagogical) purpose:
Familiarity with proofs.