Finite State Machines

The Simplest Model of Computation
What is a Finite State Machine?

As a Theoretical Model:
- Mathematical model of Computation
- No “memory”
- Is in exactly one state at any given time
- Changes state based on input
- Surprisingly flexible
- Goal: Recognize a Language

Practical examples:
- Vending machines
- Elevators
- Traffic signals
- Combination locks
- Antikythera mechanism
- Automatons

Why would you ever want to use a FSM?
FSM Characteristics

Often used in limited memory environments
- Small Computer
- Microcontroller

Finite (It’s in the name!)

Family of:
- Regular Languages
- Regular Expressions

Nodes = States
Edges = Transitions

A picture is worth a thousand words...
Formal Definition of a Finite State Machine

\[M = (Q, \Sigma, \delta, q_0, F) \]

- **\(Q \)**: Set of states (finite)
- **\(\Sigma \)**: Alphabet of symbols (finite)
- **\(\delta \)**: The transition function
 \[\delta : Q \times \Sigma \rightarrow Q \]
- **\(q_0 \)**: The starting (initial) state
 \[q_0 \in Q \]
- **\(F \)**: The set of “accept” states
 \[F \subseteq Q \]
Formal Definition of a Finite State Machine

\[M = (Q, \Sigma, \delta, q_0, F) \]

\[\begin{align*} Q & \quad \{q_1, q_2, q_3\} \\ \Sigma & \quad \{0, 1\} \\ \delta & \quad \begin{array}{cc} 0 & 1 \\ \hline q_1 & q_1 \quad q_2 \\ q_2 & q_3 \quad q_2 \\ q_3 & q_2 \quad q_2 \end{array} \\ q_0 & \quad q_1 \\ F & \quad \{q_2\} \end{align*} \]
FSM Use #1: Generating Strings

1. Begin at starting state
2. Take transitions at random
 Transitions are recorded, which is the string being generated
3. End only on valid states

Give examples of strings that can be generated.

What Language will this FSM generate?
FSM Use #2: Accepting Strings

1. Begin at starting state
2. Start at the 1st symbol of the string
3. Follow transitions as determined by the symbol, exactly 1 symbol per transition
4. Process ALL symbols in the string
5. Is the machine in a final state?

A string is either “accepted” or “rejected”
The machine “decides” if the input is valid or not.
Other FSM Considerations

Empty strings
- ε is the empty string
- Starting state is also an accept state

Empty Language
- $\emptyset = \{\}$
- There is no path from the starting state to any accept state

Important:
- $\varepsilon \neq \emptyset$
- $\{\varepsilon\} \neq \emptyset$

Dead states
- A state that exists as a “reject” state
- Often omitted from diagrams
- If an edge is omitted it is assumed to be a transition to the dead state
- Understood as being a sink node (no escape once reached)
Example

Construct a FSM that will not accept any string unless it has an even number of 0s and an even number of 1s, where $\Sigma = \{0, 1\}$.

What is its complement?
Formal Definition of Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$

Let $w_1 w_2 ... w_n$ be a string w where $w_i \in \Sigma$

M accepts w if there is a sequence of states $r_0, r_1, r_2 ... r_n$ in Q such that:

1. $r_0 = q_0$,
2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for $0 \leq i < n$, and
3. $r_n \in F$

M “recognizes” language A if

$A = \{ w \mid M \text{ accepts } w \}$

We now have a tool that we can use to understand Regular Languages!
Recap

What is this machine missing? Memory.

We have defined a Machine (FSM) and a mode of operation.
- States
- Input
- Transitions
- Start & End

We have defined what constitutes a valid Computation.
Example FSM: Even # of 0’s and even # of 1’s.

How would you program this normally?

How was this technique represented in the FSM?

Is this possible for every variable? Why or why not?