The Pumping Lemma For Regular Languages

... Proof that Computer Scientists should not be allowed to come up with names for anything. Ever.
A Quick Perspective

How do we prove that a Language is Regular?

How do we prove that a Language is NOT Regular?
Examples of Nonregular Languages

- $B = \{0^n1^n \mid n \geq 0\}$
- $C = \{w \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\}$
- $D = \{w \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \text{ as substrings}\}$

OOPS!

D is Regular!!!!

Intuition may be wrong.
The Pumping Lemma

We need a tool to prove that a language is NOT Regular.

Intuition: There is a property that ALL Regular Languages have. If a Language can be shown to NOT have this property, then that Language is NOT Regular.

Question: What is the longest string that can be generated by this FSM?

Answer: 3 characters
(3 transitions: $q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2$)
Important Ideas/Definitions

Pumping
Repeating a section of the string an arbitrary number of times (≥0), with the resulting string remaining in the language.

Pumping Length
“All string in the language can be pumped if they are at least as long as a certain special value, called the pumping length.”

Intuitive Examples:

<table>
<thead>
<tr>
<th>String</th>
<th>Pumped Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1(01)*</td>
</tr>
<tr>
<td>000001</td>
<td>(0)*00001</td>
</tr>
<tr>
<td>110100</td>
<td>1(1)*0100</td>
</tr>
</tbody>
</table>
Pumping Lemma (for Regular Languages)

If A is a Regular Language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into 3 pieces, $s = xyz$, satisfying the following conditions:

a. For each $i \geq 0$, $xy^i z \in A$,

b. $|y| > 0$, and

c. $|xy| \leq p$.
Pumping Lemma (RL) Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA recognizing A and p be the number of states of M.

Let $s = s_1s_2...s_n$ be a string in A with length n, where $n \geq p$.

Let $r_1, ..., r_{n+1}$ be the sequence of states M enters when processing s. $r_{i+1} = \delta(r_i, s_i)$ for $1 \leq i \leq n$. The sequence has length $n + 1$, which is at least $p + 1$.

Among the first $p + 1$ elements in the sequence, two must be the same state, via the pigeonhole principle. The first is called r_j, and the second is r_l.

Because r_j occurs among the first $p + 1$ places in a sequence starting at r_1, we have $l \leq p + 1$.

Now let $x = s_1...s_{j-1}$, $y = s_{j}...s_{l}$, and $z = s_{l+1}...s_n$.

As x takes M from r_1 to r_j, y takes M from r_j to r_l, and z takes M from r_l to r_{n+1}, which is an accept state. Because $r_j = r_l$, M must accept xy^iz for $i \geq 0$.

We know $j \neq l$, so $|y| > 0$; and $l \leq p + 1$, so $|xy| \leq p$.

Thus, we have satisfied all conditions of the pumping lemma. \blacksquare
Example applications of the Pumping Lemma (RL)

\[B = \{ \theta^n1^n \mid n \geq 0 \} \]

Is this Language a Regular Language?
- If Regular, build a FSM
- If Nonregular, prove using the Pumping Lemma

Proof by Contradiction:
Assume \(B \) is Regular, then Pumping Lemma must hold.

\(p \) is the pumping length given by the PL.

Choose \(s \) to be \(\theta^p1^p \).

Because \(s \in B \) and \(|s| \geq p \), PL guarantees \(s \) can be split into 3 pieces, \(s = xyz \), where for any \(i \geq 0 \), \(xy^i z \in B \). Consider 3 cases:

1. \(y \) is only \(\theta \)s. \(xy^i z \) has more \(\theta \)s than \(1 \)s, thus a contradiction via condition 1 of PL.
2. \(y \) is only \(1 \)s. Also a contradiction.
3. \(y \) is both \(\theta \)s and \(1 \)s. \(xy^i z \) may have same number of \(1 \)s and \(\theta \)s, but will be out of order, with some \(1 \)s before \(\theta \)s, also a contradiction.

Contradiction is unavoidable, thus \(B \) is not Regular.

(Could simplify with condition 3 of PL).
Example applications of the Pumping Lemma (RL)

\[C = \{ w | w \text{ has an equal number of } 0\text{\hspace{1pt}\text{s and } 1\text{\hspace{1pt}\text{s}}\} \}

Is this Language a Regular Language?

- If Regular, build a FSM
- If Nonregular, prove with Pumping Lemma

Proof by Contradiction:
Assume \(C \) is Regular, then Pumping Lemma must hold.

\(p \) is the pumping length given by the PL.

Choose \(s \) to be \(\theta^p1^p \).

Because \(s \in C \) and \(|s| \geq p \), PL guarantees \(s \) can be split into 3 pieces, \(s = xyz \), where for any \(i \geq 0 \), \(xy^iz \in C \).

Condition 3 (\(|xy| \leq p \)) keeps us from setting \(x \) and \(z \) to \(\varepsilon \), because then \(|y| \) would be greater than \(p \).

Because \(|xy| \leq p \), \textbf{y must be only } \(\theta \text{s} \). \(xyyz \) is not in the language because then the string would contain more \(\theta \text{s} \) than \(1\text{s} \). This is a contradiction.

Contradiction is unavoidable, thus \(C \) is not Regular.

Note: \((01)^p \) is a bad choice, because it \textit{can} be pumped.
Example applications of the Pumping Lemma (RL)

\[F = \{ww \mid w \in \{0, 1\}^*\} \]

Is this Language a Regular Language?
- If Regular, build a FSM
- If Nonregular, prove with Pumping Lemma

Proof by Contradiction:
Assume \(F \) is Regular, then Pumping Lemma must hold.

\(p \) is the pumping length given by the PL.

Choose \(s \) to be \(\theta^p1\theta^p1 \). *(Note: \(\theta^p\theta^p \) is a bad choice.)*

Because \(s \in F \) and \(|s| \geq p \), PL guarantees \(s \) can be split into 3 pieces, \(s = xyz \), where for any \(i \geq 0 \), \(xy^iz \in F \).

Because \(|xy| \leq p \), \(y \) must be only \(\theta \)s. \(xyyz \) is not in the language because the string will no longer be in the form \(ww \).

Contradiction is unavoidable, thus \(F \) is not Regular.

(Notice the importance of Condition 3 of PL, which keeps \(x \) and \(z \) from both being \(\varepsilon \)).
Example applications of the Pumping Lemma (RL)

$$E = \{0^i1^j \mid i > j \}$$

Is this Language a Regular Language?
- If Regular, build a FSM
- If Nonregular, prove with Pumping Lemma

Proof by Contradiction:
Assume E is Regular, then Pumping Lemma must hold.

p is the pumping length given by the PL.

Choose s to be $0^{p+1}1^p$.

Because $s \in E$ and $|s| \geq p$, PL guarantees s can be split into 3 pieces, $s = xyz$, where for any $i \geq 0$, $xy^iz \in E$.

Because $|xy| \leq p$, y must be only 0s.

There is only one more 0 than 1s.

We can pump down y to get $xy^0z = xz$.

The number of 0s in xz is less than or equal to the number of 1s, and is therefore not in the language.

Contradiction is unavoidable, thus E is not Regular.
General Form of a Proof by Contradiction with the PL

Assume that a Language L is Regular, then Pumping Lemma must hold.

Define p to be the pumping length given by the Pumping Lemma.

Choose s (often in terms of p).

Because $s \in L$ and $|s| \geq p$, PL guarantees that s can be split into 3 pieces, $s = xyz$, where for any $i \geq 0$, $xy^iz \in L$.

For all possible values of y (given the conditions of the Pumping Lemma), show that pumping xy^iz is not in the Language.

Contradiction is shown for all cases, proving that L is not a Regular Language.

Notes:
- Choosing a s that can be pumped proves nothing.
- Sometimes finding an appropriate s is the hard part.
Tools to prove that a Language is **Regular:**

- DFA
- NFA
- GNFA
- Regular Expression

Tools to prove that a Language is **Nonregular:**

The Pumping Lemma