Mapping Reducibility

there and back again...

A CS Student’s Tale.
Formalism for Reducibility

Clarifies the previously-seen Reducibility approaches. (Is a.k.a. many-one reducibility)

Mapping Reducibility is the use of a computable function to convert instances of problem A to instances of problem B.

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a computable function if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

Example: arithmetic operator +
- **Input:** \(\langle m, n \rangle \)
- **Output:** sum of \(m \) and \(n \)

Example: TM that never moves left off tape.
- **Input:** \(\langle M \rangle \)
- **Output:** \(\langle M' \rangle \) where \(L(M) = L(M') \)
Mapping Reducibility Formalism

Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the reduction from A to B.

A mapping reduction of A to B provides a way to convert questions about membership testing in A to membership testing in B.

To test whether $w \in A$, we use the reduction f to map w to $f(w)$ and test whether $f(w) \in B$.

Question: Why is this called a reduction?

Note: Mapping Reducibility may seem like a repeat of previous lectures (and, granted, it is very similar), but there are a few important subtleties which we will address throughout the lecture.
Theorem: Decidability and Undecidability

“If $A \leq_m B$ and B is decidable, then A is decidable.”

PROOF:
We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

$N = “$On input $w:$
1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs.”

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus, M accepts $f(w)$ whenever $w \in A$. Therefore, N works as desired.

Corollary:
“If $A \leq_m B$ and A is undecidable, then B is undecidable.”

Also:
“If $A \leq_m B$ and B is recognizable, then A is recognizable.”

Also:
“If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.”

BUT!
What if B is undecidable? What does that prove about A?
What if A is decidable?
Theorem - HALT_{TM} is undecidable

Original Method:

$\text{HALT}_{\text{TM}} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w\}$

Let’s assume that TM R decides HALT_{TM}. Construct TM S to decide A_{TM} as follows.

$S = “\text{On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\n1. \text{ Run TM } R \text{ on input } \langle M, w \rangle.$
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

Clearly, if R decides HALT_{TM}, then S decides A_{TM}. This is the contradiction. Because A_{TM} is undecidable, HALT_{TM} also must be undecidable.

Mapping Reduction:

$\langle M, w \rangle \in A_{\text{TM}}$ if and only if $\langle M', w' \rangle \in \text{HALT}_{\text{TM}}$.

The following machine F computes a reduction f.

$F = “\text{On input } \langle M, w \rangle:\n1. \text{ Construct the following machine } M'.
 \quad M' = “\text{On input } x:\n a. \text{ Run } M \text{ on } x.
 b. \text{ If } M \text{ accepts, accept.}
 c. \text{ If } M \text{ rejects, enter a loop}.”$
2. Output $\langle M', w \rangle.”$

How are these different?
More Theorems Re-examined: PCP

PCP has two reductions:

\[A_{\text{TM}} \leq_m \text{MPCP} \]

\[\text{MPCP} \leq_m \text{PCP} \]

Is Mapping Reduction transitive?

PROOF:
Suppose \(A \leq_m B \) and \(B \leq_m C \). Then there are computable functions \(f \) and \(g \) such that

\[x \in A \iff f(x) \in B \] and \[y \in B \iff g(y) \in C. \]

Consider the composition function \(h(x) = g(f(x)). \)

We can build a TM that computes \(h \) as follows:

First, simulate a TM for \(f \) (such a TM exists because we assumed that \(f \) is computable) on input \(x \) and call the output \(y \).

Then simulate a TM for \(g \) on \(y \). The output is \(h(x) = g(f(x)). \)

Therefore, \(h \) is a computable function. Moreover, \(x \in A \iff h(x) \in C. \)

Hence \(A \leq_m C \) via the reduction function \(h. \)
More Theorems Re-examined: \(E_{TM} \)

Original Method:

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

\(M_1 = \) “On input \(x \):
1. If \(x \neq w \), reject.
2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does.”

Assume that TM \(R \) decides \(E_{TM} \) and construct TM \(S \) that decides \(A_{TM} \) as follows.

\(S = \) “On input \(\langle M, w \rangle \), an encoding of a TM \(M \) and a string \(w \):
1. Use the description of \(M \) and \(w \) to construct the TM \(M_1 \) just described.
2. Run \(R \) on input \(\langle M_1 \rangle \).
3. If \(R \) accepts, reject; if \(R \) rejects, accept.”

Mapping Reduction

Problem: The mapping in the proof is actually \(A_{TM} \) to \(\neg E_{TM} \) (pay attention to the negation).

Notice: Decidability is not affected by complementation. But can we create a pure mapping reduction?

Proof that a Mapping Reduction is impossible:
Suppose for a contradiction that \(A_{TM} \leq_m E_{TM} \) via reduction \(f \). It follows from the definition of mapping reducibility that \(\neg A_{TM} \leq_m \neg E_{TM} \) via the same reduction function \(f \). However, \(\neg E_{TM} \) (Exercise 4.5) is Turing-recognizable and \(\neg A_{TM} \) is not Turing-recognizable.
Theorem: EQ_{TM} is neither TR nor co-TR

$A_{\text{TM}} \leq_m \overline{\text{EQ}_{\text{TM}}}$

$F =$ “On input $\langle M, w \rangle$, where M is a TM and w is a string:
1. Construct the following two machines, M_1 and M_2.
 $M_1 =$ “On any input:
 1. Reject.”
 $M_2 =$ “On any input:
 1. Run M on w. If it accepts, accept.”
 2. Output $\langle M_1, M_2 \rangle$.”

$A_{\text{TM}} \leq_m \text{EQ}_{\text{TM}}$

$F =$ “On input $\langle M, w \rangle$, where M is a TM and w is a string:
1. Construct the following two machines, M_1 and M_2.
 $M_1 =$ “On any input:
 1. Accept.”
 $M_2 =$ “On any input:
 1. Run M on w. If it accepts, accept.”
 2. Output $\langle M_1, M_2 \rangle$.”