Definitions & Theorems & Proofs

There exists some number x such that $f(x) = g(f(0)) = 1$.

Oh yes, somewhere out there, it exists.

And we must find it... and destroy it.

Grab your swords, students! We ride!

I think I'm in the wrong math class?

I'm finally in the right one.
Definitions

Yes, we are actually defining it.

Examples: $B = \{w \# w \mid w \in \{0, 1\}^*\}$

$L = \{0^n1^n \mid n \geq 0\}$

A **Definition** describes an object, notation, or idea.

Often used in subsequent mathematical statements.

Standard (mathematical) symbols do not need to be defined:

- **Traditional notation**
 - Set Operations (\emptyset, \cup)
 - Arithmetic/Logical Operators (\land, \neg)

- **Sets of numbers** (\mathbb{R}, \mathbb{N})

- **Standard functions** ($\log, \sqrt{}$)

When in doubt, define it.
Proof - A convincing logical argument that a statement is true.

Theorem - A mathematical statement proven true.

Lemma - Smaller theorem, used to prove other, larger theorems.

Corollary - Statement that is related to a theorem that is trivial to show, given the theorem is true.
Example

Theorem: For every graph G, the sum of the degrees of all the nodes in G is an even number.

Definitions:
- $G = (V, E)$, where V is a set of vertices (nodes) and,
- $E = \{(u, v) \mid u, v \in V\}$ is the set of edges.

1. What proof would you give?
2. What does the definition of E imply about the graph?
3. Does it matter?
Of course, proofs can be tricky...
3 Types Of Proofs

That we will use in this class.

Construction
- Proves that something exists by showing a (generalized) method to construct it, then demonstrates that the method is correct.

Contradiction
- Assumes the theorem is false, then uses logical argument to show that the assumption leads to a false consequence, thereby proving the original theorem to be true.

Induction
- Shows that all members of an infinite set have a specified property using a basis and an induction step.
Example: Proof by Construction

Definition: We define a graph to be \(k \)-regular if every node in the graph has degree \(k \).

Theorem: For each even number \(n \) greater than 2, there exists a 3-regular graph with \(n \) nodes.

Proof: Let \(n \) be an even number greater than 2. Construct graph \(G = (V, E) \) with \(n \) nodes as follows. The set of nodes of \(G \) is \(V = \{0, 1, ..., n-1\} \), and the set of edges of \(G \) is the set

\[
E = \{(i, i+1) \mid 0 \leq i \leq n-2\} \cup \{(n-1, 0)\} \cup \{(i, i + n/2) \mid 0 \leq i \leq (n/2) - 1\}.
\]

In the description of \(E \), the first two sets form a closed circle, with each node having degree 2. The 3rd set is an edge across the diameter of the circle, providing the 3rd degree for each node in \(V \).

Therefore, every node in \(G \) will have exactly 3 degrees. \(\square \)

Parts of Proof:
- Construction
- Proof of correctness
- Recap
Example: Proof by Contradiction

Theorem: $\sqrt{2}$ is Irrational.

Proof: Assume that $\sqrt{2}$ is rational. Therefore it must be expressible as a fraction m/n, where m and n are integers and m/n is a fraction reduced to lowest terms.

If reduced to lowest terms, either m or n must be odd.

Algebraic manipulation yields:

\[
\begin{align*}
\sqrt{2} &= m/n \\
n\sqrt{2} &= m \\
(n\sqrt{2})^2 &= m^2 \\
n^2 \cdot 2 &= m^2
\end{align*}
\]

Because m^2 is 2 times the integer n^2, we know that m^2 is even. Therefore, m, too, is even, as the square of an odd number always is odd. So we can write $m = 2k$ for some integer k. Then, substituting $2k$ for m, we get:

\[
\begin{align*}
2n^2 &= (2k)^2 \\
2n^2 &= 4k^2 \\
n^2 &= 2k^2
\end{align*}
\]

This, however, shows that n^2 is even, and thus n is even. Earlier, we had reduced both m and n so that they are not both even. This is a contradiction. The assumption must be false. \blacksquare
Example: Proof by Induction

Theorem: $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Base Case: $P(0) = \frac{0 \cdot (0 + 1)}{2} = 0$

Induction Step:

Assume that $P(k)$ is true. Show that if $P(k)$ is true, then $P(k+1)$ holds.

$$\sum_{i=1}^{k+1} i = \frac{(k+1)((k+1)+1)}{2}$$

Using the inductive hypothesis that $P(k)$ is true, the left hand side may be rewritten as:

$$\frac{k(k+1)}{2} + (k + 1)$$

Algebraic manipulation on the left hand side yields:

$$\frac{k(k+1)}{2} + (k + 1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2} = \frac{(k+1)((k+1)+1)}{2}$$

The left hand side now matches the right hand side of the equation, thereby showing that $P(k+1)$ does hold.

Since the base case and inductive step are shown to be true, the theorem is shown to hold.

What is missing?
Find The Error

CLAIM: In any set of \(h \) horses, all horses are the same color.

PROOF: By induction on \(h \).

Basis: For \(h = 1 \). In any set containing just one horse, all horses clearly are the same color.

Induction step: For \(k \geq 1 \), assume that the claim is true for \(h = k \) and prove that it is true for \(h = k+1 \). Take any set \(H \) of \(k+1 \) horses. We show that all the horses in this set are the same color.

Remove one horse from this set to obtain the set \(H_1 \) with just \(k \) horses. By the induction hypothesis, all the horses in \(H_1 \) are the same color. Now replace the removed horse and remove a different one to obtain the set \(H_2 \). By the same argument, all the horses in \(H_2 \) are the same color.

Therefore, all the horses in \(H \) must be the same color, and the proof is complete. \(\square \)
This is a Sea Horse.

Your argument is invalid.
Homework Expectations

1. **Definitions**: All new symbols must be defined within the scope of your proof.

2. **Must provide the following parts**:
 a. **Problem Statement**: Describe what you are trying to solve.
 b. **Intuition Statement**: Describe your approach informally, so that the grader can more easily understand your logic. Can be mostly prose.
 c. **Proof**: Include all necessary parts. Proof must read as a stand-alone statement, and should use mathematical formalisms where necessary for clarity & conciseness. Include closing statement.
 i. **Construction**: Must show construction & correctness of construction
 ii. **Contradiction**: Must state assumption & show contradiction
 iii. **Induction**: Must show Basis step & Induction step

3. **Beware!**
 a. Edge cases
 b. Iff must show both directions!
My professor got fed up trying to explain what a theorem is and decided to try a different approach.