Chomsky Normal Form

It's more what you'd call 'guidelines' than actual rules.
Consider the CFG G_1:

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

And the CFG G_2:

$$S \rightarrow aSb \mid SX \mid \varepsilon$$
$$X \rightarrow X \mid S \mid \varepsilon$$

1. Are G_1 and G_2 equivalent? (That is, do they generate the same language?)
2. Is there an advantage of one CFG over the other?
3. Can the disadvantage of G_2 be eliminated?
4. How could that procedure be formalized? Chomsky Normal Form.
Chomsky Normal Form
Simplifying and bounding grammars.

A context-free grammar is in **Chomsky Normal Form** if every rule is of the form:

\[S \rightarrow \varepsilon \]
\[A \rightarrow BC \]
\[A \rightarrow a \]

Where \(a \) is any terminal and \(A, B, \) and \(C \) are any variables, except that \(B \) and \(C \) may not be the start variable.

In this example, \(S \) is the start variable.

Implied by the definition:

- In \(A \rightarrow BC \), only two nonterminals are allowed in the RHS.
- In \(A \rightarrow a \), only one terminal is allowed in the RHS.
- In \(S \rightarrow \varepsilon \), only the start state may go to \(\varepsilon \).
- \(S \) may not appear on the RHS.
Theorem: Any CFG to CNF

Idea: Make conversion in stages, systematically changing or removing rules that do not match the requirements.

Stages:
1. Add new start S_0 and rule $S_0 \rightarrow S$, where S was the original start variable. (Guarantees S_0 isn’t on RHS.)

2. Eliminate ϵ-rules. For all $A \rightarrow \epsilon$, where A is not S_0, then remove the rule and for each occurrence of A in any RHS, add a new rule with the occurrence deleted. (e.g., for every rule $R \rightarrow uAv$, we would add rule $R \rightarrow uv$.)

3. Remove unit rules. For all rules of the form $A \rightarrow B$, remove the rule and for all $B \rightarrow u$, add the rule $A \rightarrow u$ unless this was a unit rule previously removed (u is a string of variables and terminals).

(cont.) Replacement happens for each occurrence of A. so $R \rightarrow uAvAw$ would add $R \rightarrow uvAw | uAvw | uvw$.

If $R \rightarrow A$ exists, then add $R \rightarrow \epsilon$ (unless this rule has already been removed). Repeat until all ϵ-rules are removed.

Repeat until all unit rules removed.
Theorem: Any CFG to CNF (continued)

4. Convert all remaining rules into the proper form.
 Reminder: Proper form is
 \[A \rightarrow BC \]
 \[A \rightarrow a \]

Replace each rule \(A \rightarrow u_1 u_2 \ldots u_k \), where \(k \geq 3 \) and each \(u_i \) is a variable or terminal, with rules:

\[A \rightarrow u_1 A_1 \]
\[A_1 \rightarrow u_2 A_2 \]
\[A_2 \rightarrow u_3 A_3 \]
\[\vdots \]
\[A_{k-2} \rightarrow u_{k-1} u_k \]

4. (cont.) \(A_i \)'s are new variables.

Replace any terminal \(u_i \) in the preceding rules with the new variable \(U_i \) and add the rule \(U_i \rightarrow u_i \).

Repeat until all rules are in the proper form.
Example: G_6 to CNF: Step 1

Before:

\[
\begin{align*}
S & \rightarrow ASA \mid aB \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{align*}
\]

After (new starting state):

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \\
A & \rightarrow B \mid S \\
B & \rightarrow b \mid \varepsilon
\end{align*}
\]
Example: G_6 to CNF: Step 2

Previous:
\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA | aB \\
A & \rightarrow B | S \\
B & \rightarrow b | \varepsilon
\end{align*}
\]

After (remove ε-rules, $B \rightarrow \varepsilon$):
\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA | aB | a \\
A & \rightarrow B | S | \varepsilon \\
B & \rightarrow b | \varepsilon
\end{align*}
\]

After (remove ε-rules, $A \rightarrow \varepsilon$):
\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA | aB | a | SA | AS | S \\
A & \rightarrow B | S | \varepsilon \\
B & \rightarrow b
\end{align*}
\]
Example: G_6 to CNF: Step 3

Previous:

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{align*}
\]

After (remove unit rules, $S \rightarrow S$):

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{align*}
\]

After (remove unit rules, $S_0 \rightarrow S$):

\[
\begin{align*}
S_0 & \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
S & \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{align*}
\]
Example: G_6 to CNF: Step 3 (cont.)

Previous:
\[
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
A \rightarrow B \mid S \\
B \rightarrow b
\]

After (remove unit rules, $A \rightarrow B$):
\[
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
A \rightarrow B \mid S \mid b \\
B \rightarrow b
\]

After (remove unit rules, $A \rightarrow S$):
\[
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\
A \rightarrow S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS \\
B \rightarrow b
\]
Example: G_6 to CNF: Step 4

Previous:

$S_0 \rightarrow ASA | aB | a | SA | AS$
$S \rightarrow ASA | aB | a | SA | AS$
$A \rightarrow b | ASA | aB | a | SA | AS$
$B \rightarrow b$

Previous:

$S_0 \rightarrow AA_1 | aB | a | SA | AS$
$S \rightarrow AA_1 | aB | a | SA | AS$
$A \rightarrow b | AA_1 | UB | a | SA | AS$
$A_1 \rightarrow SA$
$B \rightarrow b$

After (Eliminate ASA on RHS):

$S_0 \rightarrow ASA | AA_1 | aB | a | SA | AS$
$S \rightarrow ASA | AA_1 | aB | a | SA | AS$
$A \rightarrow b | ASA | AA_1 | aB | a | SA | AS$
$A_1 \rightarrow SA$
$B \rightarrow b$

After (Eliminate aB on RHS):

$S_0 \rightarrow AA_1 | aB | UB | a | SA | AS$
$S \rightarrow AA_1 | aB | UB | a | SA | AS$
$A \rightarrow b | AA_1 | UB | a | SA | AS$
$A_1 \rightarrow SA$
$U \rightarrow a$
$B \rightarrow b$
Example: G_6 to CNF

Before:

$S \rightarrow ASA \mid aB$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \varepsilon$

After (Final):

$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
$S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
$A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
$A_1 \rightarrow SA$
$U \rightarrow a$
$B \rightarrow b$

Important: Upper size bound is the square of the original Grammar size.
Convert this to CNF:

\[S \rightarrow \emptyset S_1 | \varepsilon \]

1. Add new start \(S_0 \)
2. Eliminate \(\varepsilon \)-rules.
3. Remove unit rules.
4. Convert all remaining rules into the proper form.
Convert $S \rightarrow \emptyset S1 \mid \varepsilon$ to CNF

Step 1:
\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow \emptyset S1 \mid \varepsilon
\end{align*}
\]

Step 2:
\[
\begin{align*}
S_0 & \rightarrow S \mid \varepsilon \\
S & \rightarrow \emptyset S1 \mid 01
\end{align*}
\]

Step 3:
\[
\begin{align*}
S_0 & \rightarrow \emptyset S1 \mid 01 \mid \varepsilon \\
S & \rightarrow \emptyset S1 \mid 01
\end{align*}
\]

Step 4, part 1:
\[
\begin{align*}
S_0 & \rightarrow \emptyset A \mid 01 \mid \varepsilon \\
S & \rightarrow \emptyset A \mid 01 \\
A & \rightarrow S1
\end{align*}
\]

Step 4, part 2:
\[
\begin{align*}
S_0 & \rightarrow BA \mid BC \mid \varepsilon \\
S & \rightarrow BA \mid BC \\
A & \rightarrow SC \\
B & \rightarrow 0 \\
C & \rightarrow 1
\end{align*}
\]
CNF in Retrospect

1. The book does **NOT** give a good proof. Why is it a bad example of a proof?

2. Wikipedia gives a better overview of the proof.

3. What benefit does CNF have?
 Guaranteed maximum final grammar size.
 Guaranteed maximum derivation length.

4. Why do we need CNF?
 Proofs! Algorithms! Big-O Analysis!

5. BUT!!!! Does CNF eliminate ambiguity?
 No.
Chomsky Language Hierarchies

Formal Grammar Classifications
Each class is a subset of the class above it.

https://commons.wikimedia.org/wiki/File:Chomsky-hierarchy.svg