Turing Machine Algorithms

Wait... isn’t Algorithms next year?!?

algorithm
noun
Word used by programmers when they do not want to explain what they did.
What is an Algorithm?

Does it really need a definition?

Intuitively speaking, understanding of algorithms has existed for thousands of years.

Formally speaking, algorithms were not defined until the 20th century.

Without a formal definition, it is almost impossible to prove that an algorithm can’t be created.
Historical Context

David Hilbert
Address at the International Congress of Mathematicians in Paris, 1900

Identified 23 mathematical problems as a challenge for new century.

10th problem: Create an algorithm to determine if a polynomial had an integral root.

Assumption was that an algorithm existed, it just needed to be found.

We now know that this problem is not algorithmically solvable.
1936, Church published a notation called λ-calculus to define algorithms.

1936, Turing published the specifications for an abstract “machine” to define algorithms.

1952, Equivalence of models shown by Kleene

1970, Proof published that no algorithm exists for testing if a polynomial has integral roots.
How to describe a Turing Machine

For fun and profit.

Formal Description
- Explicitly state everything
 - Example: Almost every instance when we have drawn a state machine
- Most detailed
- Avoid at all costs!!! (for complicated algorithms)

Implementation Description
- English prose describing movement of head and storage of data on tape
 - Example: How you normally answer a question in class
- Can ignore specific state details

High-Level Description
- English prose describes an algorithm
- No implementation details (no head or tape details)
- Probably how you naturally think to solve a problem
- Pseudocode

Question: Which size is best for pudding?
Answer: It all depends on how much pudding you want.
By Ruth Beystrom on April 30, 2014

See more answers (5)
Formal Notation for Turing Machines

Input is always a **string**.

If input is an object, it must be represented as a string.
- Polynomials, graphs, grammars, automata, etc.
- Input can be combinations of different types of objects.

An object O encoded as a string is $\langle O \rangle$.

For several objects $O_1, O_2, ... O_k$, they are encoded as $\langle O_1, O_2, ... O_k \rangle$.

Algorithm is given with **text**, indented as needed for block structure.
Example: $A = \{ \langle G \rangle \mid G$ is a connected undirected graph$\}$

High-level description:

$M =$ “On input $\langle G \rangle$, the encoding of a graph G:

1. **Select** the first node of G and mark it.
2. **Repeat** the following stage until no new nodes are marked:
3. For each node in G, **mark** it if it is attached by an edge to a node that is already marked.
4. **Scan** all nodes of G to determine whether they all are marked. If they are, **accept**; otherwise, **reject**.”

\[
\langle G \rangle = (1, 2, 3, 4) \cup (1, 2) \cup (2, 3) \cup (3, 1) \cup (1, 4)
\]
History of Undecidability - Segue Into Chapter 4

Videos from Computerphile on YouTube

https://www.youtube.com/watch?v=nsZsd5qtbo4
https://www.youtube.com/watch?v=FK3kifY-geM
https://www.youtube.com/watch?v=LWnd6-vSGo