Mapping Reducibility
Formalism for Reducibility

Clarifies the previously-seen Reducibility approaches. (Is a.k.a. many-one reducibility)

Mapping Reducibility is the use of a computable function to convert instances of problem A to instances of problem B.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Example: arithmetic operator +
- **Input:** $\langle m, n \rangle$
- **Output:** sum of m and n

Example: TM that never moves left off tape.
- **Input:** $\langle M \rangle$
- **Output:** $\langle M' \rangle$ where $L(M) = L(M')$
Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w, $w \in A \iff f(w) \in B$.

The function f is called the reduction from A to B.

A mapping reduction of A to B provides a way to convert questions about membership testing in A to membership testing in B.

To test whether $w \in A$, we use the reduction f to map w to $f(w)$ and test whether $f(w) \in B$.

Question: Why is this called a reduction?

Note: Mapping Reducibility may seem like a repeat of previous lectures (and, granted, it is very similar), but there are a few important subtleties which we will address throughout the lecture.
Theorem: Decidability and Undecidability

“If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.”

PROOF:
We let \(M \) be the decider for \(B \) and \(f \) be the reduction from \(A \) to \(B \). We describe a decider \(N \) for \(A \) as follows.

\[N = “\text{On input } w:\text{ 1. Compute } f(w).\text{ 2. Run } M \text{ on input } f(w) \text{ and output whatever } M \text{ outputs.”} \]

Clearly, if \(w \in A \), then \(f(w) \in B \) because \(f \) is a reduction from \(A \) to \(B \). Thus, \(M \) accepts \(f(w) \) whenever \(w \in A \). Therefore, \(N \) works as desired.

Corollary:
“If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.”

Also:
“If \(A \leq_m B \) and \(B \) is recognizable, then \(A \) is recognizable.”

Also:
“If \(A \leq_m B \) and \(A \) is unrecognizable, then \(B \) is unrecognizable.”

BUT!
What if \(B \) is undecidable? What does that prove about \(A \)?
What if \(A \) is decidable?
Theorem: Decidability and Undecidability

“If $A \leq_m B$ and B is decidable, then A is decidable.”

PROOF:
We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows.

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs.

Clearly, if $w \in A$, then $f(w) \in B$ because f is a reduction from A to B whenever $w \in A$, desired.

Corollary:
“If $A \leq_m B$ and A is undecidable, then B is undecidable.”

Also:
“If $A \leq_m B$ and B is recognizable, then A is recognizable.”

Also:
“If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.”

BUT!
What if B is undecidable? What does that prove about A?
What if A is decidable?
Theorem - \(\text{HALT}_{TM} \) is undecidable

Original Method:

\(\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \)

Let's assume that TM \(R \) decides \(\text{HALT}_{TM} \). Construct TM \(S \) to decide \(A_{TM} \) as follows.

\(S = \text{“On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:} \)

1. Run TM \(R \) on input \(\langle M, w \rangle \).
2. If \(R \) rejects, reject.
3. If \(R \) accepts, simulate \(M \) on \(w \) until it halts.
4. If \(M \) has accepted, accept; if \(M \) has rejected, reject."

Clearly, if \(R \) decides \(\text{HALT}_{TM} \) then \(S \) decides \(A_{TM} \). This is the contradiction. Because \(A_{TM} \) is undecidable, \(\text{HALT}_{TM} \) also must be undecidable.

Mapping Reduction:

\(\langle M, w \rangle \in A_{TM} \text{ if and only if } \langle M', w' \rangle \in \text{HALT}_{TM}. \)

The following machine \(F \) computes a reduction \(f \).

\(F = \text{“On input } \langle M, w \rangle :} \)

1. Construct the following machine \(M' \).
 \(M' = \text{“On input } x:} \)
 a. Run \(M \) on \(x. \)
 b. If \(M \) accepts, accept.
 c. If \(M \) rejects, enter a loop.”
2. Output \(\langle M', w \rangle. \)"

How are these different?
PCP has two reductions:
\[A_{TM} \leq^m_{m} \text{MPCP} \]
\[\text{MPCP} \leq^m_{m} \text{PCP} \]

Is Mapping Reduction transitive?

PROOF:

Suppose \(A \leq^m_{m} B \) and \(B \leq^m_{m} C \) Then there are computable functions \(f \) and \(g \) such that \(x \in A \iff f(x) \in B \) and \(y \in B \iff g(y) \in C \).

Consider the composition function \(h(x) = g(f(x)) \).

We can build a TM that computes \(h \) as follows:

First, simulate a TM for \(f \) (such a TM exists because we assumed that \(f \) is computable) on input \(x \) and call the output \(y \).

Then simulate a TM for \(g \) on \(y \). The output is \(h(x) = g(f(x)) \).

Therefore, \(h \) is a computable function. Moreover, \(x \in A \iff h(x) \in C \).

Hence \(A \leq^m_{m} C \) via the reduction function \(h \).
More Theorems Re-examined: E_{TM}

Original Method:

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$

$M_1 = \text{“On input } x:\text{ 1. If } x \neq w, \text{ reject. 2. If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does.”} \}$

Assume that TM R decides E_{TM} and construct TM S that decides A_{TM} as follows.

$S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:\text{ 1. Use the description of } M \text{ and } w \text{ to construct the TM } M_1 \text{ just described. 2. Run } R \text{ on input } \langle M_1 \rangle. 3. If } R \text{ accepts, reject; if } R \text{ rejects, accept.”} \}$

Problem: The mapping in the proof is actually A_{TM} to $\neg E_{TM}$ (pay attention to the negation).

Notice: Decidability is not affected by complementation. But can we create a pure mapping reduction?

Proof that a Mapping Reduction is impossible:
Suppose for a contradiction that $A_{TM} \leq_m E_{TM}$ via reduction f. It follows from the definition of mapping reducibility that $\neg A_{TM} \leq_m \neg E_{TM}$ via the same reduction function f. However, $\neg E_{TM}$ (Exercise 4.5) is Turing-recognizable and $\neg A_{TM}$ is not Turing-recognizable.
Theorem: EQ_TM is neither TR nor co-TR

$A_{\text{TM}} \leq_m \overline{\text{EQ}_\text{TM}}$

$F = \text{"On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is a string:} $
1. Construct the following two machines, M_1 and M_2.
 $M_1 = \text{"On any input:} $
 1. \text{Reject.}"$
 $M_2 = \text{"On any input:} $
 1. \text{Run } M \text{ on } w. \text{If it accepts, Accept."}$
2. Output $\langle M_1, M_2 \rangle$."

$A_{\text{TM}} \leq_m \text{EQ}_\text{TM}$

$F = \text{"On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is a string:} $
1. Construct the following two machines, M_1 and M_2.
 $M_1 = \text{"On any input:} $
 1. \text{Accept.}"$
 $M_2 = \text{"On any input:} $
 1. \text{Run } M \text{ on } w. \text{If it accepts, Accept."}$
2. Output $\langle M_1, M_2 \rangle$."