The Romans didn't find algebra very challenging, because X was always 10.

NP-Completeness

Brute-Force Solution: $O(n!)$

Dynamic Programming Algorithms: $O(n^2 2^n)$

Selling on eBay: $O(1)$

Still working on your route?

Shut the hell up.
Group of problems whose complexity is related to all others in the group.

Phenomenon is called **NP-Complete**.

If a polynomial time algorithm could solve *one* of these problems, then it could solve *all* other problems in the group.

Examples:

The Satisfiability Problem

Consider the Boolean operations **AND**, **OR**, and **NOT**, as shown:

<table>
<thead>
<tr>
<th>$0 \land 0 = 0$</th>
<th>$0 \lor 0 = 0$</th>
<th>$\overline{0} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \land 1 = 0$</td>
<td>$0 \lor 1 = 1$</td>
<td>$\overline{1} = 0$</td>
</tr>
<tr>
<td>$1 \land 0 = 0$</td>
<td>$1 \lor 0 = 1$</td>
<td></td>
</tr>
<tr>
<td>$1 \land 1 = 1$</td>
<td>$1 \lor 1 = 1$</td>
<td></td>
</tr>
</tbody>
</table>

Consider the Boolean formula:

$$\phi = (\overline{x} \land y) \lor (x \land \overline{z})$$

The formula is **Satisfiable** if some assignment of 0s and 1s to the formula makes $\phi = 1$.

The **Satisfiability Problem** tests whether a Boolean formula is satisfiable.

$\text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable Boolean formula} \}$

THEOREM:

“$\text{SAT} \in \text{P iff } \text{P} = \text{NP}$.”

The logic behind this requires a lot more work.
Polynomial Time Reducibility

DEFINITION:
A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **polynomial time computable function** if some polynomial time Turing machine M exists that halts with just $f(w)$ on its tape, when started on any input w.

DEFINITION:
Language A is **polynomial time mapping reducible**, or simply polynomial time reducible, to language B, written $A \leq_p B$, if a polynomial time computable function $f: \Sigma^* \rightarrow \Sigma^*$ exists, where for every w, $w \in A \iff f(w) \in B$. The function f is called the **polynomial time reduction** of A to B.

“polynomial time mapping reducible” is also known as “polynomial time many–one reducibility”

Intuition: using one problem to solve another.
(sound familiar?)

Sad Reduction Face
Theorem

“If $A \leq_p B$ and $B \in P$, then $A \in P$.”

PROOF:
Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We describe a polynomial time algorithm N deciding A as follows.

$N = “$On input $w:$

1. Compute $f(w)$.
2. Run M on input $f(w)$ and output whatever M outputs.”

We have $w \in A$ whenever $f(w) \in B$ because f is a reduction from A to B.

Thus, M accepts $f(w)$ whenever $w \in A$.

Moreover, N runs in polynomial time because each of its two stages runs in polynomial time. Note that stage 2 runs in polynomial time because the composition of two polynomials is a polynomial.

Proof complete.
3SAT

3SAT is SAT in which all formulas are in a specific format (analogous to Chomsky Normal Form for CFGs).

- A literal is a Boolean variable (x or $\neg x$).
- A clause is several literals connected with \lors.
- A Boolean formula in conjunctive normal form (called a cnf-formula) connects multiple clauses with \lands.
- A 3cnf-formula is when all clauses contain exactly 3 literals. Example:

$$(x_1 \lor \overline{x}_2 \lor x_3) \land (x_3 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4) \land (x_4 \lor x_5 \lor \overline{x}_6)$$

Let 3SAT = \{ $\langle \phi \rangle$ | ϕ is a satisfiable 3cnf-formula $\}$.

Can you convert the following to 3cnf? Remember De Morgan’s laws.

- $a \land (b \lor c \lor d)$
 - $(a \lor a \lor a) \land (b \lor c \lor d)$
- $\neg(b \lor c)$
 - $\neg b \land \neg c$
 - $(\neg b \lor \neg b \lor \neg b) \land (\neg c \lor \neg c \lor \neg c)$
- $\neg(b \lor (a \land c))$
 - $\neg b \land \neg(a \land c)$
 - $\neg b \land (\neg a \lor \neg c)$
 - $(\neg b \lor \neg b \lor \neg b) \land (\neg a \lor \neg c \lor \neg c)$
- $\neg(b \land (a \lor c))$
 - $\neg b \land \neg(a \lor c)$
 - $\neg b \land (\neg a \land \neg c)$
 - $(\neg b \lor \neg a \lor \neg a) \land (\neg b \lor \neg c \lor \neg c)$

See Tseytin Transformations.
Theorem: 3SAT Reduces to CLIQUE

“3SAT is polynomial time reducible to CLIQUE.”

IDEA:
Give a reduction to convert formulas to graphs.

Let ϕ be a formula with k clauses such as

$\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$.

Reduction f generates the string (G, k) where G is an undirected graph.

Nodes of G are arranged in k groups of 3 (each called a **triple**). Each node corresponds to a literal in a single triple.

There is an edge between all node pairs, except those with opposite labels (x and $\neg x$), and nodes within the same triple.
Theorem: 3SAT Reduces to CLIQUE (cont.)

PROOF:

“φ is satisfiable iff G has a k-clique.”

Suppose φ has a satisfying argument. At least one literal must be true in every clause. Selecting one true literal from each clause will form a k-clique in the graph. k nodes were selected because we only chose one from each triple. Each pair is joined with an edge because it does not meet the exception given earlier. Therefore, G contains a k-clique.

Conversely, suppose G contains a k-clique. Each node must belong to a different triple. A node’s label must be true. Contradictory labels cannot be connected. Therefore, the k-clique contains a node from each clause, and each node’s label is true. All clauses from φ are true, and thus φ is satisfied.

\[\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2) \]
DEFINITION:
A language B is NP-complete if it satisfies two conditions:
1. B is in NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM (e.g., Consequences):
“If B is NP-complete and $B \in P$, then $P = NP$.”

Proof follows directly from definition of polynomial time reducibility.

Intuition: If CLIQUE is solvable in polynomial time, so is 3SAT!
Theorem

“If \(B \) is NP-complete and \(B \leq_p C \) for \(C \) in NP, then \(C \) is NP-complete.”

PROOF:

\(C \) is in NP. We show that every \(A \) in NP is polynomial time reducible to \(C \).

Because \(B \) is NP-complete, every language in NP is polynomial time reducible to \(B \), and \(B \) in turn is polynomial time reducible to \(C \).

Polynomial time reductions compose; that is, if \(A \) is polynomial time reducible to \(B \) and \(B \) is polynomial time reducible to \(C \), then \(A \) is polynomial time reducible to \(C \).

Hence every language in NP is polynomial time reducible to \(C \).
THEOREM: “SAT is NP-Complete.”

Part 1: SAT is in NP.

Easy. A nondeterministic polynomial time machine can guess an assignment to a given formula φ and accept if the assignment satisfies φ.

Part 2: Every A in NP is polynomial time reducible to SAT.
Cook-Levin Theorem (cont.)

Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k.

A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of a branch of the computation of N on input w.

For convenience, first and last columns are $\#$s.

A tableau is accepting if any row of the tableau is an accepting configuration.

Every accepting tableau for N on w corresponds to an accepting computation branch of N on w.

Thus, the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

Now we must give an f to reduce A to SAT.
Goal:
On input w, the reduction produces a formula ϕ.

Variables of ϕ:
- Say that Q and Γ are the state set and tape alphabet of N, respectively.
- Let $C = Q \cup \Gamma \cup \{\#\}$.
- For each i and j between 1 and n^k and for each s in C, we have a variable, $x_{i,j,s}$.
- Each of the $(n^k)^2$ entries of a tableau is called a cell. The cell in row i and column j is called $\text{cell}[i,j]$ and contains a symbol from C.
- We represent the contents of the cells with the variables of ϕ. If $x_{i,j,s}$ takes on the value 1, it means that $\text{cell}[i,j]$ contains an s.
CONTINUING IDEA:
Design \(\varphi \) so that a satisfying assignment to the variables does correspond to an accepting tableau for \(N \) on \(w \).

The formula \(\varphi \) is the AND of four parts:
\[
\varphi_{\text{cell}} \land \varphi_{\text{start}} \land \varphi_{\text{move}} \land \varphi_{\text{accept}}
\]

Remember: turning variable \(x_{i,j,s} \) on corresponds to placing symbol \(s \) in cell \([i, j]\).

Therefore, must guarantee that the assignment turns on exactly one variable for each cell.

\[
\varphi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s, t \in C \atop s \neq t} (x_{i,j,s} \lor \overline{x_{i,j,t}}) \right) \right]
\]

\(\lor \) is shorthand for \(x_{i,j,s_1} \lor x_{i,j,s_2} \lor \cdots \lor x_{i,j,s_l} \)

INTUITION:
\(\varphi_{\text{cell}} \) merely says that, for every cell in the tableau \((i \text{ and } j)\), there is exactly one value in \(C \) which will result in the cell being a 1 (or true).

This is the first part of \(\varphi \).
Cook-Levin Theorem (cont.)

φ\text{start} = x_{1,1},\# \land x_{1,2},q_0 \land \ldots \land x_{1,n+2},w_n \land \ldots \land x_{1,n+3,\sqcup} \land \ldots \land x_{1,n^k-1,\sqcup} \land x_{1,n^k,\#}.

φ\text{start} ensures that the first configuration is the correct starting configuration.

φ\text{move} guarantees that each row of the tableau corresponds to a configuration that legally follows the preceding row’s configuration according to N’s rules. (Remember PCP?)

It does so by ensuring that each 2 × 3 window of cells is legal (e.g., configuration follows from the previous).

Ex: \(\delta(q_1, a) = \{(q_1, b, R)\}\)
\(\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}\).

φ\text{accept} ensures that an accept state appears somewhere in the tableau.

Valid windows:

\[
\phi_{\text{accept}} = \bigvee_{1 \leq i, j \leq n^k} x_{i,j,q_{\text{accept}}}.
\]
Cook-Levin Theorem (cont.)

\[\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, 1 < j < n^k} (\text{the } (i, j)-\text{window is legal}) \]

The text “the \((i, j)-\text{window is legal}\)” may be replaced with the following formula:

\[\bigvee_{a_1, \ldots, a_6 \text{ is a legal window}} (x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6}) \]

Now we must prove that the reduction runs in \textit{polynomial time}.

First, estimate the number of \textit{variables} in \(\phi\).

Tableau is a \(n^k \times n^k\) table, so it contains \(n^{2k}\) cells.

Each cell has \(l\) variables associated with it, where \(l\) is the number of symbols in \(C\).

Because \(l\) depends only on the TM \(N\) (\(N\) decides \(A\) in \(n^k\) time) and not on the length of the input \(n\), the total number of variables is \(O(n^{2k})\).

Now to estimate the size of each of the parts of \(\phi\).
Cook-Levin Theorem (cont.)

Formula ϕ_{cell} contains a fixed-size fragment of the formula for each cell of the tableau, so its size is $O(n^{2k})$.

Formula ϕ_{start} has a fragment for each cell in the top row, so its size is $O(n^k)$.

Formulas ϕ_{move} and ϕ_{accept} each contain a fixed-size fragment of the formula for each cell of the tableau, so their size is $O(n^{2k})$.

Thus, φ’s total size is $O(n^{2k})$, which is polynomial.

Cook-Levin Theorem is complete, because it is shown that:

1. SAT is in NP.
2. All other problems in NP can be reduced to SAT in polynomial time.

Therefore, SAT is proved to be NP-Complete.

Almost no other problem will take this much work.

Is it obvious to you that 3-SAT is NP-Complete?
P and NP Topics
