Course Overview

Outline
- Administrative Information
- Topics and Schedule
- Assessment/Grading

Administrative Information

- Welcome to CSE30264!
- Instructor: Christian Poellabauer
- How to contact me:
 - before/after class
 - office hours: Tuesday 10am-11am, Wednesday 11am-12pm, and by appointment
 - office location: 354 Fitzpatrick
 - email: cpoellab@cs.nd.edu
 - phone: (574) 631-9131
- TA: Chris Miller and Veena Thomas (1/2)
 - office hours: Tuesday 3:15pm-4:15pm (Chris), Wednesday 11:30am-12:30pm (Veena)
 - office location: 356B Fitzpatrick ("DARTS Lab")
 - email: cmille17@nd.edu, vthomas2@nd.edu

Textbook

 - Third Edition:
 - Fourth Edition:
 - ISBN-10: 0123705487
Administrative Information

- http://www.cse.nd.edu/~cpoellab/teaching/cse30264
- Course information
- News
- Assignments
- Schedule
- Slides

Course Goals

- learn fundamental computer network principles
- prepare for advanced CSE courses
 - homework assignments, exams
- learn algorithms, protocol, etc., that drive the Internet
 - homework assignments
- get hands dirty with implementations and experiments
 - programming assignments
- learn to solve problems in teams
 - team-based programming assignments

Grading

- 4 homework assignments (35%):
 - deepen understanding of principles, practice protocols, algorithms, etc.
- 4 project assignments (40%):
 - deepen understanding of principles, practice programming, learn how to build distributed programs, learn how to perform experiments, learn how to present results
- Midterm and final exam (10%, 15%):
 - open book, answer questions under time pressure
Other Items

- Academic Honor Code
- Knowing fundamentals of computer networks and distributed systems is extremely important!
- Look for team members, let me know if help needed. Team size = 2-3 (<2, >3 possible if good reason)
- Participate! Ask questions! Use resources!

Introduction

Outline
- Computer Networks Overview
- Statistical Multiplexing
- Inter-Process Communication
- Network Architecture
- Performance Metrics
- Implementation Issues

Applications

- Email
- WWW: www.cse.nd.edu
- Audio/Video:
- youtube.com
- File sharing
- Online gaming
- Social networks
- Others: embedded systems, banking, military, ...
Computer Networks

• Computer networking has grown explosively
• Since the 1970s, computer communication has changed from a research topic to an essential part of infrastructure
• In 1980, the Internet was a research project that involved a few dozen sites
• Today, the Internet has grown into a communication system that reaches all of the world

Complexity of Computer Networks

• Many technologies exist; each technology has features that distinguish it from the others
• Companies create commercial network products and services
• No single underlying theory exists that explains the relationship among all parts
• Multiple organizations have created computer networks standards (some standards are incompatible with others)
• Various organizations have attempted to define conceptual models
 – models are either so simplistic that they do not distinguish among details
 – or so complex that they do not help simplify the subject

Complexity of Computer Networks

• The lack of consistency in the field has produced another challenge for beginners:
 – Multiple groups each attempt to create their own terminology
 – Researchers cling to scientifically precise terminology
 – Marketing teams often invent new terms to distinguish their products or services from others
 – Technical terms are confused with the names of popular products
 – Professionals sometimes use a technical term from one technology when referring to an analogous feature of another technology
 – A large set of terms and acronyms that contains many synonyms
 – Computer networking jargon contains terms that are often abbreviated, misused, or associated with products
Network Applications and Programming

- Network services are provided by an application software
 - an application on one computer communicates across a network with an application program running on another computer
- Each application offers a specific service with its own form of user interface
 - but all applications can communicate over a single, shared network
- A unified underlying network that supports all applications makes a programmer’s job much easier
 - only programmer needs to learn about one interface to network and one basic set of functions to be used
 - it is possible to understand network applications, and even possible to write code that communicates over a network, without understanding the hardware/software technologies
 - once a programmer masters the interface, no further knowledge of networking may be needed
- However, knowledge of the underlying network system allows a programmer to write better code and develop more efficient applications

Data Communications

- Data communications refers to the study of low-level mechanisms and technologies used to send information across a physical communication medium
 - such as a wire, radio wave, or light beam
- Data communications focuses on ways to use physical phenomena to transfer information
 - the subject may only seem useful for engineers who design low-level transmission facilities
 - however, we will see that several key concepts that arise from data communications influence the design of many protocol layers
- Data communications provides a foundation of concepts
 - on which the rest of networking is built

Building Blocks for Data Communications

- Nodes: PC, special-purpose hardware…
 - hosts
 - switches
- Links: coax cable, optical fiber…
 - point-to-point
 - multiple access
Packet Switching and Networking Technologies

• In 1960s, the packet switching concept revolutionized data communications

• Early communication networks had evolved from telegraph and telephone systems
 – a physical pair of wires between two parties to form a dedicated circuit

• Although mechanical connections of wires was being replaced by electronic switches, but the underlying paradigm remained the same:
 – form a circuit and then send information across the circuit

• Packet switching changed networking in a fundamental way
 – it provided the basis for the modern Internet
 – packet switching allows multiple users to share a network
 – packet switching divides data into small blocks, called packets
 – it includes an identification of the intended recipient in each packet
 – devices throughout the network each have information about how to reach each possible destination

Switched Networks

• A network can be defined recursively as...
 – two or more nodes connected by a link, or
 – two or more networks connected by a node
Packet Switching and Networking Technologies

- Many designs for packet switching are possible
- But there is a need for answers to basic questions:
 - how should a destination be identified?
 - how can a sender find the identification of a destination?
 - how large should a packet be?
 - how can a network recognize the end of one packet?
 - how can a network recognize the beginning of another packet?
 - if a network is shared, then how can they coordinate to insure that each receives a fair opportunity to send?
 - how can packet switching be adapted to wireless networks?
 - how can network technologies be designed to meet various requirements for speed, distance, and economic cost?
- Many packet switching technologies have been created
 - to meet various requirements for speed, distance, and economic cost.

Internetworking with TCP/IP

- In the 1970s, another revolution in computer networks arose: Internet
- In 1973, Vinton Cerf and Robert Kahn observed that
 - no single packet switching technology would ever satisfy all needs
- They suggested to stop trying to find a single best solution
 - instead, explore interconnecting many packet switching technologies into a functioning whole
 - they proposed a set of standards be developed for such an interconnection
 - the resulting standards became known as the TCP/IP Internet Protocol Suite (usually abbreviated TCP/IP)
- The success of TCP/IP lies in its tolerance of heterogeneity
- TCP/IP takes a virtualization approach
 - that defines a network-independent packet and a network-independent identification scheme

Public/Private Internet

- The Internet consists of parts that are owned and operated by individuals or organizations
- From ownership point of view, we can categorize networks into public and private networks:
 - A public network is run as a service that is available to subscribers
 - any individual or corporation who pays the subscription fee can use
 - a company that offers service is known as a service provider
 - public refers to the general availability of service, not to the data being transferred
 - A private network is controlled by one particular group
 - network use is restricted to one group
 - a private network can include circuits leased from a provider
Networks, Interoperability, Standards

- Communication always involves at least two entities
 - one that sends information and another that receives it
- All entities in a network must agree on how information will be represented and communicated; agreement requires many details
 - the way that electrical signals are used to represent data
 - procedures used to initiate and conduct communication,
 - and the format of messages
- An important issue is interoperability
 - it refers to the ability of two entities to communicate
- All communicating parties agree on details and follow the same set of rules, an exact set of specifications
- Communication protocol, network protocol, or simply protocol to refer to a specification for network communication
- A protocol specifies the details for one aspect of communication
 - including actions to be taken when errors or unexpected situations arise

Protocol Suites and Layering Models

- A set of protocols must be constructed
 - to ensure that the resulting communication system is complete and efficient
- Each protocol should handle a part of communication not handled by other protocols
- How can we guarantee that protocols work well together?
 - instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families
- Each protocol in a suite handles one aspect of networking
 - the protocols in a suite cover all aspects of communication
 - the entire suite is designed to allow the protocols to work together efficiently

Protocol Suites and Layering Models

- The fundamental abstraction used to collect protocols into a unified whole is known as a layering model
- All aspects of a communication problem can be partitioned into pieces
 - each piece is known as a layer
- Dividing protocols into layers helps both protocol designers and implementers manage the complexity
 - to concentrate on one aspect of communication at a given time
Example of Layering