Routing

Outline
- Distance Vector
- Link State

Overview
- Forwarding vs Routing
 - Forwarding: to select an output port based on destination address and routing table
 - Routing: process by which routing table is built
- Network as a Graph

- Problem: Find lowest cost path between two nodes
- Factors
 - Static
 - Dynamic

Distance Vector
- Each node maintains a set of triples
 - (Destination, Cost, NextHop)
- Directly connected neighbors exchange updates
 - Periodically (on the order of several seconds)
 - Whenever table changes (called triggered update)
- Each update is a list of pairs:
 - (Destination, Cost)
- Update local table if receive a “better” route
 - Smaller cost
 - Came from next-hop
- Refresh existing routes; delete if they time out
Example

<table>
<thead>
<tr>
<th>Destination</th>
<th>Cost</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Routing Loops

- **Example 1**
 - F detects that link to G has failed
 - F sets distance to G to infinity and sends update to A
 - A sets distance to G to infinity since it uses F to reach G
 - A receives periodic update from C with 2-hop path to G
 - A sets distance to G to 3 and sends update to F
 - F decides it can reach G in 4 hops via A

- **Example 2**
 - Link from A to E fails
 - A advertises distance of infinity to E
 - B and C advertise a distance of 2 to E
 - B decides it can reach E in 3 hops; advertises this to A
 - A decides it can reach E in 4 hops; advertises this to C
 - C decides that it can reach E in 5 hops...

Loop-Breaking Heuristics

- Set infinity to 16
- Split horizon
- Split horizon with poison reverse
Routing Information Protocol (RIP)

- Distributed along with BSD Unix
- Straightforward implementation of DV
- Updates sent every 30 seconds
- Link costs constant at 1 (16 = infinity)

Link State

- Strategy
 - send to all nodes (not just neighbors)
 information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

Link State (cont)

- Reliable flooding
 - store most recent LSP from each node
 - forward LSP to all nodes but one that sent it
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each LSP
 - discard when TTL=0
Route Calculation

- Dijkstra’s shortest-path algorithm
- Let
 - N denotes set of nodes in the graph
 - $l(i, j)$ denotes non-negative cost (weight) for edge (i, j)
 - s denotes this node
 - M denotes the set of nodes incorporated so far
 - $C(n)$ denotes cost of the path from s to node n

\[
M = \{ s \} \\
C(n) = l(s, n) \\
\text{while } (N - M) \\
M = M \cup \{ w \} \text{ such that } C(w) \text{ is the minimum for all } w \in (N - M) \\
\text{for each } n \in (N - M) \\
C(n) = \min \{ C(n), C(w) + l(w, n) \}
\]

OSPF

- Open Shortest Path First Protocol
- Authentication
- Additional hierarchy
- Load balancing
Metrics

• Original ARPANET metric
 – measures number of packets queued on each link
 – took neither latency or bandwidth into consideration

• New ARPANET metric
 – stamp each incoming packet with its arrival time (AT)
 – record departure time (DT)
 – when link-level ACK arrives, compute
 \[\text{Delay} = (DT - AT) + \text{Transmit} + \text{Latency} \]
 – if timeout, reset DT to departure time for retransmission
 – link cost = average delay over some time period

• Revised ARPANET metric
 – compressed dynamic range
 – replaced \text{Delay} with link utilization

• Practice
 – static metrics (e.g., 1/bandwidth)

Routing for Mobile Hosts

• Mobile IP:
 – home agent, home address, foreign agent
 – triangle routing problem

 \[\text{Home agent (10.0.0.3)} \]
 \[\text{Foreign agent (12.0.0.6)} \]
 \[\text{Sending host} \]
 \[\text{Home network (network 10)} \]
 \[\text{Internet} \]
 \[\text{Mobile host (10.0.0.9)} \]