Multicast & MPLS

Outline
- Multicast for LS
- Multicast for DV
- Protocol Independent Multicast
- MPLS

Process Groups
- Any set of processes that want to cooperate
- Processes can join/leave a group
- A process can belong to many groups
- Groups can be either open or closed
- Use multicast rather than point-to-point messages
 - group name (address) provides a useful level of indirection
- Example uses
 - data dissemination (e.g., news)
 - replicated servers

Multicast Addresses
- Subrange of IP address space reserved for MC (class D for IPv4)
- IPv4: 28 bits of possible MC addresses
- Ethernet: uses 23 bits for multicast
- Mapping 28 bits onto 23 bits: 32 IP addresses map into each one of the Ethernet addresses
- Ethernet host joins IP MC group by configuring device to receive Ethernet MC address. IP at host must inspect packet if actually directed to this host
Multicast Routing: LS

- Each host on a LAN periodically announces the groups it belongs to using IGMP
- Augment update message (LSP) to include set of groups that have members on a particular LAN
- Each router uses Dijkstra’s algorithm to compute shortest-path spanning tree for each source/group pair
- Each router caches tree for currently active source/group pairs

Multicast Routing: DV

- Reverse Path Broadcast
 - Each router already knows that shortest path to S goes through router N
 - When receive multicast packet from S, forward on all outgoing links (except one it arrived on), iff packet arrived from N
 - Eliminate duplicate broadcast packets by letting only "parent" for LAN (relative to S) forward
 - shortest path to S (learn from distance vector)
 - smallest address to break ties

DV (cont)

- Reverse Path Multicast
 - Goal: prune networks that have no hosts in group G
 - Step 1: determine if LAN is a leaf w/o members in G
 - leaf if parent is only router on the LAN
 - determine if any hosts are members of G using IGMP
 - Step 2: propagate "no members of G here" information
 - augment (destination, cost) update sent to neighbors with set of groups for which this network is interested in receiving multicast packets
 - only happens when multicast address becomes active
Protocol Independent Multicast

- PIM: sparse mode (PIM-SM) and dense mode
- Routers join/leave groups: Join/Prune messages
- Rendezvous Point (RP) for each group
- Shared trees and source-specific trees

PIM

Multiprotocol Label Switching

- MPLS:
 - enable IP capabilities on devices that do not have capability to forward IP datagrams in normal manner.
 - forward IP packets along ‘explicit routes’.
 - support certain types of virtual private network services.
Destination-Based Forwarding

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1</td>
<td></td>
</tr>
<tr>
<td>10.3.3</td>
<td></td>
</tr>
</tbody>
</table>

Label Distribution Protocol

<table>
<thead>
<tr>
<th>Label</th>
<th>Prefix</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>10.1.1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10.3.3</td>
<td></td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1</td>
<td></td>
</tr>
<tr>
<td>10.3.3</td>
<td></td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1</td>
<td></td>
</tr>
<tr>
<td>10.3.3</td>
<td></td>
</tr>
</tbody>
</table>

Label = 15, Prefix = 10.1.1

Label = 24, Prefix = 10.1.1
Label Switching Routers

(a) ATM cell header
(b) "Shim" header (for PPP, Ethernet, etc.)

ATM cell header

PPP header

Layer 3 header

HEC

Label

DATA

CLP

PTI

VCI

GFC

VPI

Benefits

Explicit Routing

- "Fish" network
- Resource Reservation Protocol (RSVP)