Switching and Forwarding

Outline
Cell Switching
Segmentation and Reassembly

Cell Switching (ATM)
- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signalling (connection setup) protocol: Q.2931
- Specified by ATM forum
- Packets are called cells
 - 5-byte header + 48-byte payload
- Commonly transmitted over SONET
 - other physical layers possible

Variable vs Fixed-Length Packets
- No optimal length
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
- Fixed-length easier to switch in hardware
 - simpler
 - enables parallelism
Big vs Small Packets

- Small improves queue behavior
 - finer-grained preemption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 × 8/100 = 327.68μs
 - high priority packet may sit in the queue 327.68μs
 - transmission time = 53 × 8/100 = 4.24μs for ATM

- maximum packet = 4KB
- link speed = 100Mbps
- transmission time = 4096 × 8/100 = 327.68μs
- high priority packet may sit in the queue 327.68μs
- near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68μs while both arrive
 - at end of 327.68μs, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24μs
 - at end of 327.68μs, just over 4KB left in queue

Big vs Small

- Small improves latency (for voice)
 - voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
 - need full cell’s worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancelers

- ATM compromise: 48 bytes = (32+64)/2

Cell Format

- User-Network Interface (UNI)
 - host-to-switch format
 - VCI: Virtual Circuit Identifier
 - VPI: Virtual Path Identifier
 - Type: management, congestion control, AAL5 (later)
 - CLP: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

- Network-Network Interface (NNI)
 - switch-to-switch format
 - GFC becomes part of VPI field
Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

AAL 3/4

- Convergence Sublayer Protocol Data Unit (CS-PDU)
 - CPI: common part indicator (version field)
 - Btag/Etag: beginning and ending tag
 - BAsize: hint on amount of buffer space to allocate
 - Length: size of whole PDU

Cell Format

- Type
 - BOM: beginning of message
 - COM: continuation of message
 - EOM: end of message
 - SSM: single-segment message
- SEQ: sequence of number
- MID: multiplexing id
- Length: number of bytes of PDU in this cell
Encapsulation

CS-PDU header	User data	CS-PDU trailer
44 bytes | 44 bytes | 44 bytes
ATM header | AAL trailer | Cell payload | Padding

AAL5

- CS-PDU Format
 - Pad: trailer always falls at end of ATM cell
 - Length: size of PDU (data only)
 - CRC-32
- Cell Format
 - End-of-PDU bit in Type field of ATM header

Virtual Paths

- 8-bit VPI and 16-bit VCI
- Two-level hierarchy of virtual connections