Security in Wireless LANs and Mobile Networks

Wireless Magnifies Exposure Vulnerability

- Information going across the wireless link is exposed to anyone within radio range
- RF may extend beyond a room or a building
- Infrared limited to a room
- Traditional wireline networks benefit from physical security
 - Access to the wire is required to gain information
 - Switched networks further reduce exposure

Mobility Makes it Difficult to Establish Trust

- A mobile user must connect to a network component (e.g., an access point) that is physically hidden
 - Problem on both home and foreign networks
- Mobility on foreign networks -- service providers are unknown and, perhaps, not trusted
 - Access points
 - Foreign agents
 - DHCP servers

Sniffing is easy

Is this my AP?
Lack of Infrastructure

- Lack of security infrastructure
- Authentication servers
- Certificate authorities
- Unknown nodes providing service
- Intermediate nodes for ad hoc routing

Can intermediate node be trusted?

System Design Issues

- Mobile form factor
 - Desire low power consumption
 - Minimize computation
 - Minimize network communication
 - Constrained by low processing capabilities
 - Constrained by limited link capacity
- Need cryptographic and other security-related algorithms to be simple
- Need to minimize communications overhead for security protocols

Secure Communications (1)

- Privacy or confidentiality
 - The intended recipients know what was being sent but unintended parties cannot determine what was sent
 - Requires some form of encryption and decryption
 - Encryption at the sender
 - Decryption at the receiver using a public or private (secret) key to decode the encrypted information
- Authentication
 - Confirms the identity of the other party in the communication
 - Assures that
 - The claimed sender is the actual sender
 - The claimed receiver is the actual receiver
Secure Communications (2)

- Message integrity and non-repudiation
 - Data integrity – data is transmitted from source to destination without undetected alteration
 - Non-repudiation – prove that a received message came from a claimed sender
- Availability and access control
 - Ensures availability of resources for the intended users
 - Controls access to resource

Link Versus End-to-End Security

- End-to-end security
 - Provided by network (e.g., IPsec), transport (e.g., SSL), and/or application layer (e.g., application-specific)
- Link security
 - Provided by link layer (e.g., IEEE 802.11 WEP, WPA, or IEEE 802.11i)

Cryptography

- Symmetric (private) key cryptography
 - Sender and receiver keys are identical ($K_A = K_B$)
- Asymmetric (public) key cryptography
 - Sender (encryption) key (K_A) is public
 - Receiver (decryption) key ($K_B = K_A$) is private
Public Key Cryptography
- Unlike a private key system, one can publish the key for encryption in a public key encryption system

\[
\begin{align*}
\text{Plaintext} & \xrightarrow{\text{Encryption}} \text{Ciphertext} \quad K_B^*(m) \\
\text{Ciphertext} & \xrightarrow{\text{Decryption}} \text{Plaintext} \\
& \quad m = K_B^*(K_B^*(m))
\end{align*}
\]

Authentication with Private Key Cryptography
- Authentication can be implemented with symmetric (private) key cryptography

\[
\begin{align*}
\text{A} & \quad \text{Claim “A”} \\
& \quad \text{Generate a one-time “nonce”} \\
& \quad \text{K(R)} \\
& \quad \text{encrypt} \\
& \quad \text{K(R)} \\
& \quad \text{decrypt} \\
& \quad R \quad \checkmark
\end{align*}
\]

Authentication with Public Key Cryptography
- Use of public key avoids shared key problem
- Vulnerable to “man-in-the-middle” attack

\[
\begin{align*}
\text{A} & \quad \text{Claim “A”} \\
& \quad \text{R} \\
& \quad K_A(R) \\
& \quad \text{Key Request} \\
& \quad K_A^* \\
& \quad \text{Sender must have used private key of A, so it is A} \\
& \quad \text{Compute } K_A^*(K_A(R)) = R \quad \checkmark
\end{align*}
\]
IEEE 802.11 Security
- Security was not thoroughly addressed in the original IEEE 802.11 standard
- Based on Wired Equivalent Privacy (WEP)
- Objective is to not compromise security when compared to a standard wired LAN (e.g., Ethernet)

Evolution
- Long-term: IEEE 802.11i
- Short-term: WiFi Protected Access (WPA)

IEEE 802.11: Authentication (1)
- IEEE 802.11 supports two authentication schemes
 - Open system “authentication”
 - Shared key authentication
- Authentication management frames used in a transaction to establish authentication
 - Authentication algorithm number
 - Authentication transaction sequence number
 - Status code
- Deauthentication management frame sent to terminate an association
 - Reason code

IEEE 802.11: Authentication (2)
- Open system “authentication” is really just a placeholder for systems that do not wish to implement true authentication
 - One station asserts its identity
 - The other station responds with success
- Shared key authentication
 - Both stations must have a copy of a WEP key
 - Station proves identity by encrypting and returning challenge text
 - 128-bit challenge text based on RC4 stream cipher
- Shared key authentication only authenticates the station to the AP, not the AP to the station!
IEEE 802.11: Shared Key Authentication
- Uses private key authentication scheme shown earlier

IEEE 802.11: Deauthentication
- A station can terminate an authentication association with another station by sending that station a deauthentication frame
- Contains just a reason code, e.g., sending station is leaving the BSS or ESS

IEEE 802.11: Privacy
- Based on Wired Equivalent Privacy (WEP)
- MAC at sender encrypts frame body of data frames
 - Headers and non-data frames are not encrypted
 - Does not protect against data analysis attacks
- MAC at receiver decrypts and passes data to higher level protocol
- Uses RC4 symmetric stream cipher
 - Same key at sender and receiver
 - Can be applied to variable length data
- Key distribution not addressed in standard
WEP Data Encryption

- Host/AP share 40-bit symmetric key
- Semi-permanent WEP key
- May be longer (e.g., 128 bits)
- Host appends 24-bit initialization vector (IV) for each frame to create a 64-bit key
- 152-bit key with 128-bit WEP key
- The 64-bit key is used to generate a stream of keys, k_i^{IV}, using RC4 private key stream cipher algorithm
- Key k_i^{IV} is used to encrypt byte d_i in the frame
 \[c_i = d_i \oplus k_i^{IV} \] (XOR is exclusive-or)
- Initialization vector (IV) and the encrypted bytes, c_i, are sent in the frame

WEP Encryption at the Sender

WEP Encryption Vulnerability

- Initialization vectors are 24 bits in length and a new one is used for each frame, so IVs are eventually reused
- IVs are transmitted in plaintext, so IV reuse can be detected just by packet sniffing
- Attack
 - An intruder causes a host to encrypt known plaintext, d_1, d_2, d_3, \ldots
 - The intruder sees $c_i = d_i \oplus k_i^{IV}$
 - The intruder knows c_i and d_i, so it can compute k_i^{IV}
 - The intruder knows encrypting key sequence $k_1^{IV}, k_2^{IV}, k_3^{IV}, \ldots$
 - The next time that the same IV is used, the intruder can decrypt
IEEE 802.11: Security Weaknesses (1)
- WEP encryption is flawed, affecting privacy and authentication
- Static WEP keys leave encryption vulnerable
- Initialization vectors sent in the clear
- Generation of IVs may be weak
 - Not specified in the standard
 - All NICs from a vendor may generate the same sequence of IVs or the IV may be a fixed value
- Exposed IV (revealing part of key) plus weakness of RC4 make WEP vulnerable to analysis
- Can be broken for a busy network by a contemporary personal computer – about 10 hours for sniffing and a few seconds to “guess” the key

IEEE 802.11: Security Weaknesses (2)
- Integrity check based on CRC
 - Relatively weak compared to a hash or message authentication scheme
 - Introduces vulnerabilities for certain kinds of attacks
- Unilateral challenge-response used for authentication vulnerable to “man-in-the-middle” attack
- Asymmetric authentication
 - Station cannot authenticate AP
 - Key management is not addressed by the standard
 - Very complex task, especially for a large network

IEEE 802.11: Security Weaknesses (3)
- “Out-of-the-box” default is usually no security
- Ease of deployment and ease of operation for users
- Lots of WLANs with no security configured!
Improving IEEE 802.11 Security

- RSA Security’s Fast Packet Rekeying
- WiFi Alliance’s WiFi Protected Access (WPA)
- IEEE 802.11 Technical Group i (IEEE 802.11i)

Fast Packet Rekeying

- Message Integrity Check function on all WEP-encrypted data frames
- Generates a unique key to encrypt each network packet on the WLAN
 - Hashing technique (known by sender and receiver) used to rapidly generate per packet keys
 - Per-packet key is based on fixed WEP key
- The IEEE 802.11 group has approved fast packet rekeying as a fix for some WEP security weaknesses

WiFi Protected Access

- WiFi Protected Access (WPA) is intended as a near-term solution to the IEEE 802.11 security problem
 - Software-only updates – requires update to AP firmware and NIC driver
 - A subset of the more extensive IEEE 802.11i techniques
- Based on two main functions
 - 802.1x port-based access control
 - Temporal Key Integrity Protocol (TKIP)
IEEE 802.1x Port-Based Access Control

- Allows use of upper-layer authentication protocols
- AP and station can authenticate each other
- Integrates with IETF’s Extensible Authentication Protocol (EAP)
 - See RFC 2284
 - Authentication can be...
 - On the AP
 - Use a backend server, e.g., with RADIUS
- Allows use of session keys
 - 802.1x keys can be changed each session
 - Standard WEP keys are semi-permanent

Temporal Key Integrity Protocol

- Extends the initialization vector (IV) space beyond 24 bits
- Uses key construction for each packet
- Improves cryptographic integrity check beyond CRC used in WEP
- Supports key derivation and distribution

IEEE 802.11i

- IEEE 802.11i also known as Robust Security Network (RSN)
- Longer-term solution (but should be available very soon)
- Requires hardware replacements for APs and NICs
- Superset of WPA – includes...
 - IEEE 802.1x port-based access control
 - Temporal Key Integrity Protocol (TKIP)
- Includes support for Advanced Encryption Standard (AES) for confidentiality and integrity
Advanced Encryption Standard

- The Advanced Encryption Standard (AES) is published by NIST as the successor to Data Encryption Standard (DES)
- Operation
 - 128-byte blocks of data (cleartext)
 - 128-, 192-, or 256-bit symmetric keys
- NIST estimates that a machine that can break 56-bit DES key in 1 second would take about 149 trillion years to crack a 128-bit AES key (unless someone is very lucky)

Mitigating Risk

- Management countermeasures
 - For example, standardizing AP settings and controlling use of WLANs within an organization
- Operational countermeasures
 - For example, controlling coverage area of APs
- Technical countermeasures
 - Access point configuration
 - Firmware and software updates
 - Personal firewalls
 - Intrusion detection systems (IDS)
 - Maximizing WEP key length
 - Security audits
 - Virtual private networks

Virtual Private Networks

- Using a VPN (e.g., based on IPsec) above the WLAN provides the security present in the environment of the VPN server
Mobile Networks

- Security vulnerabilities in Mobile IP
 - Rogue Foreign Agents
 - Impersonating a Home Agent
 - Impersonating a Mobile Host to redirect traffic
 - Reducing security to enable Mobile IP – router at foreign network
- Security vulnerabilities in mobile ad hoc networks (MANETs)
 - Generating faulty routing information
 - Snooping on relayed traffic
 - Refusing to route
 - Power-oriented attacks

Summary

- Examined the basic objectives of security and fundamental approaches to cryptography and authentication
- IEEE 802.11 security features (which are flawed)
 - Authentication
 - Privacy and integrity
- Solutions to IEEE 802.11’s security problems
 - WiFi Protected Access (WPA)
 - IEEE 802.11i – Robust Security Network (RSN)
- Higher layer security methods can also address WLAN security problems
- Other security issues in wireless and mobile systems