Crowdsensing refers to the process of collecting sensor data using smart devices from a crowd of contributing users.
Technical Enabler 1: Powerful Embedded Sensors in Smartphones

- Ambient light
- Proximity
- Dual cameras
- GPS
- Accelerometer
- Dual microphones
- Compass
- Gyroscope

Technical Enabler 2: Open and Programmable
Technical Enabler 3: App Store

Apple Store

Technical Enabler 4: Mobile Computing Cloud

Cloud computing

Dropbox
Mobile Crowdsensing (MCS) Paradigm

• Participatory Sensing:
 – Users actively engage in the “sensing process”
 – Users determine when/how/what data are collected
 – Human intelligence can be leveraged for complex tasks
 – More costs or incentives are needed to keep humans involved
 – Phone context issues can be resolved

Mobile Crowdsensing (MCS) Paradigm

• Opportunistic Sensing:
 – Fully automated and no user involvement
 – Difficult to determine when/how/what data are collected (phone/user context)
 – Less burden and “costs” on the user
 – Energy issues
 – Activation issues
Mobile Crowdsensing (MCS) Paradigm

- Concerns and issues with both
 - Compliance/incentives
 - Collect data or keep data collection software running
 - Privacy/security
 - What is being collected and shared
 - Data quality (incl. false data)
 - Sufficient amount of data, “good” data, timing of data, times or geographic areas with lower quantity/quality
 - Data labeling/annotations
 - Providing ground truth for collected data
 - Device diversity; resource limitations
 - Turning data into information

Examples: Participatory/Oppportunistic/Both?

- City of South Bend:
 - Collect pollution data in all parts of town
 - Study the routes cyclists take through the city
 - Find graffiti across town
 - Find invasive species in rivers and lakes
 - Find potholes
 - Study activity/mobility patterns of citizens
 - Improve public transportation system

- What type of data? What types of sensors?
- Always-on sensing, context-triggered, human-triggered?
- Challenges: data quality, privacy, compliance, resources?
Examples: Urban Sensing Apps

- Noise mapping
- Emotion mapping
- Congestion charging

Example: NetHealth Study

- Smartphone Sensor Data

<table>
<thead>
<tr>
<th>Device</th>
<th>Data Type</th>
<th>Sampling Period (Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>Location (Latitude, Longitude, Accuracy)</td>
<td>2.75</td>
</tr>
<tr>
<td>Fitbit</td>
<td>Step Counts, activity levels (sedentary, light, fair, high), Calorie burn, Heart rate</td>
<td>1</td>
</tr>
</tbody>
</table>

- Subjects
 - 467 iPhone users (on-campus freshmen)
 - Avg. age ~17y 11m (SD = 11m)
 - 2015-2019
Years of Location Data

September 2016

Iranda

Computer Science and Engineering - University of Notre Dame

Personal Places of Interest

Computer Science and Engineering - University of Notre Dame
Personal Places of Interest

- GPS represents location as <longitude,latitude>
 - Semantic location is better for reasoning about locations
 - E.g.: street address (140 Park Avenue, Worcester, MA) or (building, floor, room)
 - Geocoding: addresses into longitude/latitude
 - Reverse geocoding: longitude/latitude into addresses
 - Example: Google Geocoding API

![Google Geocoding API Example](image)

Personal Places of Interest

- Place: physical space that has a name (e.g., local businesses, points of interest, geographic locations)
 - Fitzpatrick Hall, South Bend Airport, Studebaker Museum, Martin’s Supermarket on Ironwood Rd., etc.
- Location APIs (e.g., Google Places API) often provide contextual information about places near device
 - Name of place, address, geographical location, place ID, phone number, place type, website URL, etc.
GeoFencing

• Sends alerts when user is within a certain radius to a location of interest
• Can be configured to send:
 – ENTER event when user enters circle
 – EXIT event when user exits circle
 – Can also specify a duration or DWELL user must be in circle before triggering event

Points of Interest

• Points of Interest (PoI): places where a person spends lots of time (e.g., home, work, café, etc.)
 – Given a sequence GPS <longitude, latitude> points, how to infer points of interest?
 – General steps:
 • Pre-process sequence of GPS points (remove outliers, etc.)
 • Form cluster of points
 • Convert cluster to a semantic location
Pre-Processing GPS Points
(Remove Noise and Outliers)

- Remove low density points (few neighbors):
 - Places where little time was spent
 - E.g., radius of 20 meters, keep only clusters with at least 50 points
 - If GPS coordinates retrieved every minute, only considering places where you spent at least 20, 30, 50, ... minutes
 - What might this time depend on?
 - Remove points with movement:
 - GPS returns speed as well as <longitude, latitude> coordinates
 - If speed value indicates that user is moving, discard that GPS point
 - Reduce data for stationary locations:
 - When user is stationary at same location for very long time, too many points generated (e.g., sitting at at chair)
 - Remove some points to speed up processing

Clustering

- Cluster analysis: group points
- Two main clustering approaches:
 - K-means clustering
 - DBSCAN
K-Means Clustering

- Each cluster has a center point (centroid)
 - Each point associated to cluster with closest centroid
 - Number of clusters (K) must be specified
 - Algorithm:

\[
\text{Select K points as the initial centroids}
\]
\[
\text{repeat}
\]
\[
\text{Form K clusters by assigning all points to the closest centroid}
\]
\[
\text{Recompute the centroid of each cluster}
\]
\[
\text{until The centroids don’t change}
\]

DBSCAN Clustering

- Density-based clustering
 - Density: number of points within specified radius (Eps)
 - Core points: have > minPoints density
 - Border points: have < minPoints density, but are within neighborhood of core point
 - Noise point: not core point or border point
DBSCAN Clustering

- Eliminate noise points & cluster remaining points

```
current_cluster_label = 1
for all core points do
    if the core point has no cluster label then
        current_cluster_label = current_cluster_label + 1
        Label the current core point with cluster label current_cluster_label
    end if
    for all points in the Eps-neighborhood, except i\textsuperscript{th} the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```

Converting Clusters to Semantic Locations

- Can simply call reverse geocoding or Google Places API on the centroid of the clusters
 - Determining work? Cluster where user spends most time during 9am and 5pm
 - Determining home? Cluster where user spends most time during 6pm and 6am
Sensing Example: Location Hotspots

Subjects' locations during daytime hours

Subjects' locations during nighttime hours

Crowdsensing for Health/Wellness

- Assess a user's **quality of life** through analysis of
 - Place visits and mobility patterns, social interactions, and levels of physical activity
- Researchers and healthcare providers can monitor **patient behavior** remotely
 - E.g., assess the effectiveness of stroke therapy
- Deliver place-specific mobile **health interventions**
 - E.g., encourage individuals to work out when near gyms or parks
- Deliver **customized surveys** to an individual's phone
 - E.g., social interaction surveys, or mood surveys
NetHealth: Continuous Health Monitoring

- Opportunities of continuous monitoring:
 - Identify mobility patterns
 - Time spent indoors/outdoors; type of transportation; locations visited
 - Recognize social interactions
 - Electronic communications (email, phone, SMS, chat)
 - In-person meetings (individual/group, type of meeting, venue)
 - Identify activities
 - Healthy/unhealthy habits, routine household activities, physical activities
 - Other health-related information and events
 - Sleep times/quality, stress, moods, falls and other injuries
NetHealth: Continuous Health Monitoring

- **Configurable Integrated MONitoring Toolkit**
- Powerful smartphone monitoring system for Android-based devices:
 - Monitor sensor activities (e.g., GPS, accelerometer, gyroscope, microphone, barometer, magnetometer, etc.)
 - Monitor user activities (e.g., communications, apps, music, browsing, etc.)
 - Monitor system activities (e.g., resource usage, network connections and traffic, etc.)
- Configurable to meet sensing needs of specific (health) situation

Screenshots of Configuration Screens
Examples of Sensing Capabilities

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Sensing Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS & Triangulation</td>
<td>Locations, routes, indoor/outdoor time</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Mode of transportation, activities, step counters</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Type of activities, unusual events (falls)</td>
</tr>
<tr>
<td>Wi-Fi Proximity</td>
<td>Locations, routes</td>
</tr>
<tr>
<td>Bluetooth Proximity</td>
<td>Proximity to friends, family, coworkers, etc.</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>Type of activities</td>
</tr>
<tr>
<td>NFC/RFID</td>
<td>Locations (supermarket, library, etc.)</td>
</tr>
<tr>
<td>Barometer</td>
<td>Locations (floor of building)</td>
</tr>
<tr>
<td>Applications</td>
<td>Preferences, moods, interests/hobbies</td>
</tr>
<tr>
<td>Phone, EMail, SMS</td>
<td>Communication patterns, moods</td>
</tr>
<tr>
<td>Media (Music, Pictures, ...)</td>
<td>Preferences, interests, moods</td>
</tr>
</tbody>
</table>
Technical Challenge: Battery Life

Current research focus: collect maximum amount of data at highest quality possible, while making sure that device will last 14-16 hours (typical time between recharging)

CIMON Sensing App: Labeling Interface

- Allows subjects to track common types of activities
- Used for development of activity detection algorithms
- In addition to pre-defined activities, subjects can add custom activities