Graduate Operating Systems

Fall 2017

Working Set Model

• How much memory does a process need?
• Virtual memory & memory management
• Paging-in, paging-out
• Page replacement strategies
 – Metric: page traffic
 – Optimal
 – Random
 – FIFO
 – LRU
 – ATLAS Loop Detection
 – Belady: simple + “some” historical data
Working Set Model

CPU

logical address

page number

frame number

TLB

TLB hit

physical address

physical memory

page table

Working Set Model

logical memory

page table

valid-invalid bit

frame

physical memory
Working Set Model

- Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Optimal

FIFO

LRU
Working Set Model

- Working set of information $W(t, \tau)$
- Working set size $\omega(t, \tau)$

Properties of working set:
- Size (Figure 3)
- Prediction
- Reentry rate
- τ-sensitivity

- τ too small/large

Working Set Model

- In-core & use bits (Figure 5)
- Processor demand D; memory demand m

- if $D > m \Rightarrow$ Thrashing
- Policy if $D > m$, then suspend or swap out one of the processes
Working Set Model

Paper “WSCLOCK”

- Local vs. global replacement policies
- Dirty bit
- CLOCK algorithm
- Task isolation: WS vs. CLOCK
Paper “WSCLOCK”