Graduate Operating Systems

Fall 2017

Paper “Survey”

- Simulated computer X on computer G
- $X = G$, why?
- Virtual machine system, virtual machine (VM), virtual machine monitor (VMM)
- Security, reliability, development costs
- Dual-mode systems
- Combination of VM, Multiprogramming, Virtual Storage
• Computer architecture generations
 – Vacuum tubes, transistors, ICs, microprocessors, (AI/massively parallel/…)
• Virtual mode bit
• Trap & emulate
• Virtualizable architectures
• Performance: policies, interface, new mechanisms
Paper “Survey”

- Installation management, release trauma
- Retrofitting old systems
- Development and testing
- Education
- Reliability (isolation)
- Security

Paper “VMM”

- Reasons for VM revival
- Less focus on multitasking, more focus on security and reliability
- Encapsulation and migration
- Replication
- Suspend and resume
- Strong isolation
Paper “VMM”

• “Virtualizable”: direct execution supported (VM executing on real machine, while VMM has ultimate control of CPU); VM’s privileged and unprivileged code runs in CPU’s unprivileged mode (VMM runs in privileged)

• Sensitive instructions S
• Privileged instructions P
• **Virtualizable if S subset of P**

Moore’s Law: the cost of computing power decreases over time.

Paper “VMM”

• Example of disabling interrupts
• X86: POPF, code segment register

• Paravirtualization
• Direct execution + fast binary translation
Paper “VMM”

- Memory virtualization
 - Shadow page table
 - Balloon process
- I/O virtualization
 - Hosted architecture
 - Type 1 hypervisor