Graduate Operating Systems
(Memory Management)

Fall 2020

Paper “Superpages”

- Small pages vs. large pages
- TLB coverage (how large should it be?)
- Hardware-imposed constraints
 - Page sizes supported by hardware
 - Contiguous in physical and virtual address space
 - Starting address must be multiple of its size
 - TLB uses single set of reference/dirty/protection bits for page
Paper “Superpages”

- Relocation-based allocation
 - When is relocation needed?
- Reservation-based allocation
 - What is the problem with this approach?
- Fragmentation control: “contiguity as a resource”
- Promotion
 - Challenges: who/when to promote
- Demotion
 - Challenge: how do we know which “sub pages” are used
- Eviction
 - Challenge: dirty bits

Paper “Superpages”

- Proposed solution: reservation-based approach
- Buddy allocator
- Multi-list reservation scheme
- How to choose superpage size?
 - Dynamically-sized objects
 - Fixed-size objects
Paper “Superpages”

• Preempting reserved (unused) frames
• Coalescing of available memory regions
 – Contiguity-aware page replacement
 (active/inactive/cache lists)
• Incremental promotions
 – Cascading promotions possible
• Speculative demotions
 – E.g., due to eviction; to next-smaller size
 – Probabilistic demotions

Paper “Superpages”

• Dirty superpages
 – Demote clean superpages when writing occurs
• Population map
 – Keeps track of allocated base pages
• Wired page clustering
Paper “Superpages”

- Incremental promotions
- Speculative demotions
- Dirty superpages
- Reservation lists
- Population map
- Contiguity-aware page daemon
- Wired page clustering