Graduate Operating Systems
(Virtual Machines)

Fall 2020

Paper “Architecture”

• Interoperability, impregnability, versatility
• Interfaces (ISA) & abstractions (files)
• Virtualization vs. abstraction
• Architecture vs. implementation
• ISA, ABI, API
• Process vs. system
Paper “Architecture”

• Process VM = execute individual process
• System VM = complete system environment
• Guest, host, run-time, VMM

Paper “Architecture”

• Process VM
 – Replication: multiprogramming
 – Emulation: different HW, interpretation, dynamic binary translation (+ cache)
 – Optimization: same-ISA optimizers
 – High-level language VM
Paper “Architecture”

- System VM
 - Multiple, isolated guest Oses
 - Isolation, platform replication
 - Classic system VMs
 - Hosted VMs
 - Whole-system VMs
 - Multiprocessor virtualization
 - Codesigned VMs

Paper “Xen”

- Goals of Xen; challenges of VMs
- Resource containers
- Accounting issue, QoS crosstalk issue
Paper “Xen”

- Memory management
 - TLB: SW/HW, tagged/flush
 - Push page table responsibility to guest OS
 - Xen avoids TBL flush
 - Give guest OS control over page table management
 - Protect Xen from triggering flushing

Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenLinux environment.
Paper “Xen”

• CPU management
 – Privilege levels
 – Validate privileged calls by Xen
 – System calls handled without Xen involvement
• I/O management
 – Xen does not emulate devices
 – Uses shared-memory buffer-descriptor rings

Paper “Xen”

• Hypercalls and events
• I/O rings
• BVT scheduling
• Virtual address translation
• Physical memory
• Virtual firewall-router
• Disk