Paper “RM/EDF”

- The correctness of the system
 - Logical/functional
 - Temporal
- RT computing
 - The objective of “fast computing” is to minimize the average response time
 - The objective of real-time computing is to meet the individual timing requirement of each task
Paper “RM/EDF”

- Hard vs. soft real-time
- Closed-loop control

The system being controlled

Paper “RM/EDF”

- Job
 - Each unit of work that is scheduled and executed by the system
- Task
 - A set of related jobs
 - For example, a periodic task Ti consists of jobs J1, J2, J3, ... coming at every period
- Release time
 - Time instant at which a job becomes available for execution
 - It can be executed at any time at or after the release time
- Deadline
 - Time instant by which a job should be finished
 - Relative deadline: Maximum allowable response time
 - Absolute deadline = release time + relative deadline
Paper “RM/EDF”

- Periodic task T_i
 - Period P_i
 - Worst case execution time C_i
 - Relative deadline D_i

- Job J_{ik}
 - Absolute deadline = release time + relative deadline
 - Response time = finish time – release time

- Deadline miss if
 - Finish time > absolute deadline
 - Response time of J_{ik} > D_i
Paper “RM/EDF”

- Table-driven scheduling
- Jitter
- Hyperperiods

Paper “RM/EDF”

- A scheduling algorithm S is optimal if S cannot schedule a real-time task set T, no other scheduling algorithm can schedule T
- E.g., Rate Monotonic & EDF
Common Assumptions

- Single processor
- Every task is periodic
- Deadline = period
- Tasks are independent
- WCET of each task is known
- Zero context switch time

Paper “RM/EDF”

- Fixed priority system
 - Assign the same priority to all the jobs in each task
 - Rate monotonic (RMS)
- Dynamic priority system
 - Assign different priorities to the individual jobs in each task
 - Earliest Deadline First (EDF)
Paper “RM/EDF”

• RMS: optimal fixed priority scheduling algorithm
• Shorter period \rightarrow Higher priority
 – Higher rate \rightarrow higher priority
• Utilization bound

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \leq n(\sqrt{2} - 1)$$

$$\lim_{n\to\infty} n(\sqrt{2} - 1) = \ln 2 \approx 0.693147\ldots$$

RMS (Rate Monotonic Scheduling)

Process P_1: service time = 20, period = 50, deadline = 50
Process P_2: service time = 35, period = 100, deadline = 100
Missed Deadlines with RMS

Process P_1: service time = 25, period = 50, deadline = 50
Process P_2: service time = 35, period = 80, deadline = 80

RMS is guaranteed to work if

$\sum_{i=1}^{N} \frac{f_i}{P_i} \leq N \left(\sqrt{\frac{2}{\pi}} - 1\right)$;

$\lim_{N \to \infty} N \left(\sqrt{\frac{2}{\pi}} - 1\right) = \ln 2 \approx 0.693147$

<table>
<thead>
<tr>
<th>N</th>
<th>$N \left(\sqrt{\frac{2}{\pi}} - 1\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.828427</td>
</tr>
<tr>
<td>3</td>
<td>0.779763</td>
</tr>
<tr>
<td>4</td>
<td>0.756828</td>
</tr>
<tr>
<td>5</td>
<td>0.743491</td>
</tr>
<tr>
<td>10</td>
<td>0.717734</td>
</tr>
<tr>
<td>20</td>
<td>0.705298</td>
</tr>
</tbody>
</table>

Paper “RM/EDF”

- EDF: shorter absolute deadline \rightarrow Higher priority
- Utilization bound $U_b = 1$
- U_b is necessary and sufficient
EDF (Earliest Deadline First)

Process P₁: service time = 25, period = 50, deadline = 50
Process P₂: service time = 35, period = 80, deadline = 80

Paper “RM/EDF”

- RMS
 - RMS may not guarantee schedulability even when U < 1
 - Low overhead: priorities do not change for a fixed task set
- EDF
 - EDF guarantee schedulability as long as U <= 1
 - High overhead: task priorities may change dynamically
Paper “RM/EDF”

• Implementation complexity
 – Modifying systems vs. from scratch
 – Periods for newly arriving tasks
 – Fixed vs. infinite number of priority levels
 – EDF runtime overheads (priorities change)

 – Winner: RMS

Paper “RM/EDF”

• Run-time overhead
 – Updating deadlines costly
 – EDF: fewer context switches (preemptions)
Paper “RM/EDF”

• Run-time overhead

![Graph 1](image1.png)

![Graph 2](image2.png)

• Winner: EDF
Paper “RM/EDF”

• Schedulability analysis
 – EDF (d=p): simple
 – RMS: $U \leq 0.69$; simple, but resources wasted
 • Hyperbolic bound (higher acceptance ratio for large n)
 – Exact for EDF:
 • Processor Demand Criterion (PDC) for $d < p$
 – Exact for RMS:
 • Response Time Analysis (RTA)

Paper “RM/EDF”

• Schedulability analysis

• Winner: Tie?
Paper “RM/EDF”

• Robustness during overloads
 – Permanent

 – Winner: RMS

![Diagram of schedule]

Figure 8. Schedules produced by EDF (a) and RMS (b) for a set of three periodic tasks in a permanent overload situation.

Paper “RM/EDF”

• Robustness during overloads
 – Transient

 – Winner: Tie

![Diagram of schedule]

Figure 9. Under overloads, only the highest priority task is protected under RM, but nothing can be ensured for the other tasks.
Paper “RM/EDF”

- Jitter and Latency

- Winner: Tie?

Paper “RM/EDF”

- Resource sharing
 - Solutions for EDF and RMS exist

- Aperiodic tasks
 - Periodic servers (EDF has higher utilization bounds)

- Resource reservations
 - Reservation protocols exist for EDF and RMS