Review Session - Midterm#1

Claudiu Raicu

February 13, 2011

1. The crime rate in a certain city can be approximated by a function f(x, y, z), where x is the unemployment rate, y is the amount of social services available, and z is the size of the police force. Determine which of the following inequalities hold (explain your answer!):

a)
$$\frac{\partial f}{\partial x} > 0$$
 or $\frac{\partial f}{\partial x} < 0$. b) $\frac{\partial f}{\partial y} > 0$ or $\frac{\partial f}{\partial y} < 0$. c) $\frac{\partial f}{\partial z} > 0$ or $\frac{\partial f}{\partial z} < 0$.

2. Find the values of x, y, z at which

$$f(x, y, z) = x^{2} + 4y^{2} + 5z^{2} - 6x + 8y + 3$$

assumes its minimum value.

- 3. Find he dimensions of a rectangular box of volume 1000 cubic inches for which the sum of the dimensions is minimized.
- 4. Calculate $\int_{1}^{4} \left(\int_{x}^{x^{2}} xy dy \right) dx$, and $\int_{0}^{1} \left(\int_{0}^{4} (x\sqrt{y} + y) dy \right) dx$.
- 5. Let R be the rectangle consisting of all points (x, y) such that $0 \le x \le 2, \ 2 \le y \le 3$. Calculate $\iint_R e^{-x-y} dx dy$.
- 6. Find t such that $-\pi/2 \le t \le \pi$ and t satisfies
 - a) $\sin(t) = -\sin(3\pi/8)$. b) $\sin(t) = -\cos(t)$. c) $\sin(t) = -\cos(\pi/3)$.
- 7. Determine the value of $\sin(t)$ when $t = 5\pi$, -2π , $17\pi/2$, $-13\pi/2$.
- 8. A tree casts a 60-foot shadow when the angle of elevation of the sun (measured from the horizontal) is 53°. How tall is the tree?
- 9. Differentiate $y = \tan(x^4 + x^2), \ y = \ln(x)\cos(x), \ f(t) = \frac{\tan(2t)}{\cos(t)}, \ f(t) = e^{\tan(t)}, \ y = e^{3x}\sin^4(x).$
- 10. Use the identity $1 + \tan^2(t) = \sec^2(t)$ to evaluate $\int_0^{\pi/4} \tan^2(x) dx$.