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7 Techniques of integration

The basic formula that you need to remember is∫
udv = uv −

∫
vdu,

or if u = f(x), v = g(x) ∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx.

Example 7.1. Evaluate ∫
x2 cos(2x)dx.

Solution. The general rule to integrate a product P (x)T (x) between a polynomial function and
a trigonometric function is to use integration by parts with u = P (x), dv = T (x)dx. This
will decrease the degree of the polynomial, and you should repeat the procedure as long as the
polynomial has positive degree.

In our example, P (x) = x2 and T (x) = cos(2x). Integration by parts with u = x2 and

dv = cos(2x)dx yields du = 2xdx, v =
1
2

sin(2x), so∫
x2 cos(2x)dx =

∫
udv = uv −

∫
vdu = x2 sin(2x)

2
−
∫
x sin(2x)dx. (1)

Now x sin(2x) is again a product between a polynomial and a trigonometric function, but
the new polynomial has smaller degree, so we’ve made progress. To evaluate

∫
x sin(2x)dx, we

use again integration by parts, with u = x, dv = sin(2x), which yields du = dx, v =
− cos(2x)

2
.

We get ∫
x sin(2x)dx =

∫
udv = uv −

∫
vdu

= −xcos(2x)
2

+
1
2

∫
cos(2x)dx

= −xcos(2x)
2

+
sin(2x)

4
+ C.

(2)
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Combining (1) and (2) we get∫
x2 cos(2x)dx = x2 sin(2x)

2
+ x

cos(2x)
2

− sin(2x)
4

+ C =
2x2 − 1

4
sin(2x) +

x

2
cos(2x) + C.

Exercise 7.2. Try ∫
x3 cos(x)dx.

Answer:
(x3 − 6x) sin(x) + (3x2 − 6) cos(x).

Many times you may be required to make a substitution to reduce to the above case.

Example 7.3. Evaluate ∫
x cos(x2/3)dx.

Proof. The substitution u = x2/3 yields u3 = x2, or after differentiation 3u2du = 2xdx. We can

therefore replace the term xdx by
3
2
u2du, and cos(x2/3)dx to get∫

x cos(x2/3)dx =
3
2

∫
u2 cos(u)du.

Now apply the above strategy to finish the problem. The final answer should be

3x2/3 cos(x2/3) +
3(x4/3 − 2)

2
sin(x2/3) + C.

We can summarize the above examples in the following pair of reduction formulas:

Example 7.4. Show that∫
xn cos(x)dx = xn sin(x)− n

∫
xn−1 sin(x)dx. (3)

∫
xn sin(x)dx = −xn cos(x) + n

∫
xn−1 cos(x)dx. (4)

Solution. To prove (3), follow the above strategy: let u = xn, dv = cos(x)dx, du = nxn−1dx,
v = sin(x). We get∫

xn cos(x)dx =
∫
udv = uv −

∫
vdu = xn sin(x)− n

∫
xn−1 sin(x)dx.

Exercise 7.5. Prove (4).
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The above discussion can be easily translated into a strategy for integrating P (x)ex where
P is a polynomial function.

Example 7.6. Prove the reduction formula∫
xnexdx = xnex − n

∫
xn−1exdx.

Proof. We use integration by parts with u = xn, dv = exdx, which yields du = nxn−1dx, v = ex,
and ∫

xnexdx =
∫
udv = uv −

∫
vdu = xnex − n

∫
xn−1exdx.

Exercise 7.7. Evaluate ∫
x3exdx.

(See Exercise 7.2.)

Exercise 7.8. Evaluate ∫
x2e2xdx.

(See Example 7.1.)

Exercise 7.9. Evaluate ∫
xex

2/3
dx.

(See Example 7.3.)

Substitutions. It is a general rule that whenever the integrand involves composition of func-
tions like sin(f(x)), tan(f(x)), ef(x),

√
1− f(x)2 etc., you should start with the substitution

u = f(x). We’ve already apply this principle in Example 7.3 and Exercise 7.9. This substitution
is especially useful when f(x) = n

√
ax+ b is the root of some linear form.

Example 7.10. Evaluate ∫
e

3√2x+5dx.

Solution. The function f(x) from the above discussion is in our example f(x) = 3
√

2x+ 5. The
substitution u = f(x) yields u3 = 2x+ 5, and after differentiation 3u2du = 2dx. We get∫

e
3√2x+5dx =

3
2

∫
u2eudu.

You now reduce the problem to the integration of a product between a polynomial and the
exponential function. This you can attack using the strategy described above.

Example 7.11. Evaluate ∫
1

x+
√
x+ 2

dx.
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Solution. Our function is now f(x) =
√
x+ 2. The substitution u = f(x) yields u2 = x+ 2, or

2udu = dx. Therefore∫
1

x+
√
x+ 2

dx =
∫

1
u2 − 2 + u

2udu =
∫

2u
(u− 1)(u+ 2)

du.

To integrate this function you now use partial fractions: write

2u
(u− 1)(u+ 2)

=
A

u− 1
+

B

u+ 2

and solve for A,B. Plugging in u = 1 and u = −2 in the equality

2u = A(u+ 2) +B(u− 1)

yields A = 2/3, B = 4/3. It follows that∫
2u

(u− 1)(u+ 2)
du =

2
3

∫
1

u− 1
du+

4
3

∫
1

u+ 2
du =

2
3

ln |u− 1|+ 4
3

ln |u+ 2|+ C.

In the next example, f(x) is no longer of the form n
√
ax+ b.

Example 7.12. ∫
t3e−t2dt.

Solution. We let our f be f(t) = t2. The substitution y = f(t) yields dy = 2t · dt and∫
t3e−t2dt =

1
2

∫
t2e−t2(2t · dt) =

1
2

∫
ye−ydy.

Letting u = y, dv = e−ydy, v = −e−y we get∫
ye−ydy = −ye−y +

∫
e−ydy = −ye−y − e−y + C.

It follows that ∫
t3e−t2dt =

1
2

(−t2e−t2 − e−t2) + C.

The logarithm. In many cases you are asked to integrate a function of the form f(x) ln(x).
The first thing you should try is to use integration by parts with u = ln(x), dv = f(x)dx. This
will require to integrate f(x) in order to determine v, which will be in general an easy task.

Example 7.13. Calculate ∫
ln(x)
x2

dx.
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Solution. The integrand has the form f(x) ln(x) where f(x) =
1
x2

. We try integration by parts

with u = ln(x), dv = f(x)dx, which gives du =
1
x
dx, v =

−1
x

. We get∫
ln(x)
x2

dx =
∫
udv = uv −

∫
vdu =

− ln(x)
x

+
∫

1
x2
dx =

− ln(x)− 1
x

+ C.

A more involved computation is presented in the following example.

Example 7.14. Calculate ∫
x ln(x)√
x2 − 1

dx.

Solution. The integrand has the form f(x) ln(x) where f(x) =
x√

x2 − 1
. We try integration by

parts with u = ln(x), dv = f(x)dx, du =
1
x
dx. The first step is to integrate f :

v =
∫
f(x)dx =

∫
x√

x2 − 1
dx.

Notice that the integrand involves the composition of the functions √ and g(x), where g(x) =
x2 − 1. The preceding paragraph suggest the substitution y = x2 − 1. We get dy = 2xdx and∫

x√
x2 − 1

dx =
1
2

∫
1
√
y
dy =

1
2
√
y + C.

We can therefore take v =
√
x2 − 1. Going back to integration by parts we get∫

x ln(x)√
x2 − 1

dx =
∫
udv = uv −

∫
vdu = ln(x)

√
x2 − 1−

∫ √
x2 − 1
x

dx.

To integrate
√
x2 − 1
x

we can use one of the following methods

Method 1 Use the substitution x = sec(θ). This gives dx = tan(θ) sec(θ)dθ,
√
x2 − 1 =

tan(θ), and therefore∫ √
x2 − 1
x

dx =
∫

tan(θ)
sec(θ)

tan(θ) sec(θ)dθ

=
∫

tan2(θ)dθ =
∫

(sec2(θ)− 1)dθ

= tan(θ)− θ + C =
√
x2 − 1− sec−1(x) + C.

Method 2 Use the substitution y =
√
x2 − 1. This gives y2 = x2 − 1, and after differenti-

ating 2ydy = 2xdx. Therefore∫ √
x2 − 1
x

dx =
∫

y

x2
xdx =

∫
y

y2 + 1
ydy

=
∫

(1− 1
y2 + 1

)dy = y − tan−1(y) + C =
√
x2 − 1− tan−1(

√
x2 − 1) + C.
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Putting together all of the above, we get that∫
x ln(x)√
x2 − 1

dx = ln(x)
√
x2 − 1−

√
x2 − 1 + tan−1(

√
x2 − 1) + C.

The following is an instructive example of combining three of the strategies described above:
use of rationalizing substitution u = n

√
ax+ b, use of integration by parts to eliminate the

logarithm, and use of partial fractions to integrate a rational function.

Example 7.15. Calculate ∫
ln(x− 1)
x
√
x

dx.

Solution. To get rid of the square root start with the substitution t =
√
x, or x = t2. This gives

dx = 2tdt and ∫
ln(x− 1)
x
√
x

dx =
∫

ln(t2 − 1)
t3

2tdt = 2
∫

ln(t2 − 1)
t2

dt.

To eliminate the ln term, use integration by parts with u = ln(t2 − 1), dv = dt
t2

. We get
du = 2t

t2−1
dt, v = −1

t , and hence∫
ln(t2 − 1)

t2
dt = − ln(t2 − 1)

t
+
∫

1
t

2t
t2 − 1

dt

= − ln(t2 − 1)
t

+
∫

2
(t+ 1)(t− 1)

dt.

Write
2

t2 − 1
=

A

t− 1
+

B

t+ 1
and solve for A,B to get A = 1, B = −1. It follows that∫

2
(t+ 1)(t− 1)

dt =
∫

1
t− 1

dt−
∫

1
t+ 1

dt = ln |t− 1| − ln |t+ 1|+ C.

Tracing back through the calculations and using the fact that t =
√
x we get∫

ln(x− 1)
x
√
x

dx = −2 ln(x− 1)√
x

+ 2 ln |
√
x− 1| − 2 ln |

√
x+ 1|+ C.

8 Applications

Arc length formula. The length of the curve y = f(x), a ≤ x ≤ b is

L =
∫ b

a
ds =

∫ b

a

√
1 +

(
dy

dx

)2

dx =
∫ b

a

√
1 + (f ′(x))2dx.

Example 8.1. Determine the length of the curve y =
√
x− x2 + sin−1(

√
x), 0 ≤ x ≤ 1.
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Solution. We have
dy

dx
=

1
2
√
x− x2

(x−x2)′+
1√

1−
√
x

2
(
√
x)′ =

1− 2x
2
√
x− x2

+
1√

1− x
· 1
2
√
x

=
2(1− x)

2
√
x− x2

=
(1− x)√
x− x2

.

It follows that

1 +
(
dy

dx

)2

= 1 +
(1− x)2

x− x2
= 1 +

1− x
x

=
1
x
.

Using the arc length formula we get

L =
∫ 1

0

√
1
x
dx = 2

√
x|10 = 2.

Area of a surface of revolution. The surface area obtained by rotating the curve y = f(x)
about the x-axis is

S =
∫

2πyds.

Similarly, the surface area obtained by rotating the curve about the y-axis is

S =
∫

2πxds.

Example 8.2. Determine the area of the surface of revolution obtained by rotating the curve

y =
1
4
x2 − 1

2
ln(x), 1 ≤ x ≤ 2 about the y-axis.

Solution. We have

1 +
(
dy

dx

)2

= 1 +
(
x

2
− 1

2x

)2

=
(
x

2
+

1
2x

)2

.

It follows that

S = 2π
∫
xds = 2π

∫ 2

1
x

(
x

2
+

1
2x

)
dx = 2π(

x3

6
+
x

2
)|21 =

10π
3
.

Moments and centers of mass The coordinates of the center of mass are computed using
the formulas

x =
My

m
, y =

Mx

m
,

where m is the mass of the system, and Mx,My are the moments with respect to the x− and
y-axes. In the case of a region lying between the axes x = a and y = b, beneath the graph of
a function f(x) and above the graph of g(x), the formulas for the mass and moments are (ρ
denotes the density, which may be harmlessly taken to be equal to 1)

m = ρ

∫ b

a
(f(x)− g(x))dx,

Mx = ρ

∫ b

a
x(f(x)− g(x))dx,

My = ρ

∫ b

a

1
2

(f(x)2 − g(x)2)dx.
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Example 8.3. Find the centroid of the region bounded by the curves

y = x3, x+ y = 2, y = 0.

First solution. Consider the two regions X,Y in the figure below. We denote by M(X)x,M(X)y

the moments of X with respect to the x- and y-axes, and similarly M(Y )x,M(Y )y the corre-
sponding moments of Y . We let m(X),m(Y ) denote the masses corresponding to X,Y (there
is no loss in assuming the density to be equal to 1, so that m(X),m(Y ) are the areas of X,Y ).
We have

m(X) =
∫ 1

0
x3dx =

1
4

and
m(Y ) =

1
2
.

(we used the fact that the area of a right triangle with side lengths 1, 1,
√

2 is 1/2). Using the
formulas for moments we get

M(X)y =
∫ 1

0
x · x3dx =

1
5
,

M(X)x =
∫ 1

0

1
2
· (x3)2dx =

1
14
.

We know that the coordinates of the centroid of a triangle are the averages of the coordinates

of its vertices. Therefore G(Y ), the centroid of Y , has coordinates
(

1 + 1 + 2
3

,
0 + 1 + 0

3

)
=

(4/3, 1/3). This shows that

M(Y )y = m(Y ) · 4
3

=
2
3
,

M(Y )X = m(Y ) · 1
3

=
1
6
.

It follows that the moments of the union X ∪ Y are

My = M(X)y +M(Y )y =
13
15
,
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Mx = M(X)x +M(Y )x =
5
21
.

The total mass of the system is

m = m(X) +m(Y ) =
3
4
.

We conclude that the coordinates of the centroid of the system are

x =
My

m
=

52
15
, y =

Mx

m
=

20
63
.

Second solution. The region bounded by the curves y = x3, x+ y = 2, y = 0 is the region under
the graph of f (see the figure), where

f(x) =

{
x3, 0 ≤ x ≤ 1;
2− x, 1 ≤ x ≤ 2.

The coordinates (x, y) of the centroid are given by

x =
1
A

∫ 2

0
xf(x)dx, y =

1
A

∫ 2

0

1
2
f(x)2dx,

where A is the area below the graph of f ,

A =
∫ 2

0
f(x)dx =

∫ 1

0
x3dx+

∫ 2

1
(2− x)dx =

x4

4
|10 −

(2− x)2

2
|21 =

1
4

+
1
2

=
3
4
.

We have∫ 2

0
xf(x)dx =

∫ 1

0
x4dx+

∫ 2

1
(2x− x2)dx =

x5

5
|10 + (x2 − x3

3
)|21 =

1
5

+
4
3
− 2

3
=

13
15
,

and ∫ 2

0
f(x)2dx =

∫ 1

0
x6dx+

∫ 2

1
(2− x)2dx =

x7

7
|10 −

(2− x)3

3
|21 =

1
7

+
1
3

=
10
21
.

It follows that
x =

4
3
· 13

15
=

52
45

and
y =

4
3
· 1

2
· 10

21
=

20
63
.

Third solution. We can think of the given region as being bounded by the functions f(y) = 2−y
and g(y) = 3

√
y, 0 ≤ y ≤ 1. Then the formulas for mass and moments give (ρ = 1)

m =
∫ 1

0
(f(y)− g(y))dy = (2y − y2

2
− 3

4
y4/3)|10 =

3
4
,

Mx =
∫ 1

0
y(f(y)− g(y))dy = (y2 − y3

3
− 3

7
y7/3)|10 =

5
21
,

My =
∫ 1

0

1
2

(f(y)2 − g(y)2)dy =
∫ 1

0

4− 4y + y2 − y2/3

2
dy = (2y − y2 +

y3

6
− 3

10
y5/3)|10 =

13
15
.

We can now conclude as in the first solution.
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