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11 Series

Theorem 11.1. (Geometric series) The geometric series
∞∑

n=1

arn−1 = a + ar + ar2 + · · ·

is convergent if |r| < 1 and its sum is
∞∑

n=1

arn−1 =
a

1− r
.

If |r| ≥ 1, the geometric series is divergent.

Example 11.2. Is the series
∑∞

n=1 22n+152−n convergent or divergent?

Solution. We have
∞∑

n=1

22n+152−n =
∞∑

n=1

40
(

4
5

)n−1

We take a = 40, r = 4/5 in the previous theorem, and conclude that the series is convergent.
The sum of the series is then

40 · 1
1− 4

5

= 200.

Example 11.3. Express the number 1.231 = 1.2313131 · · · as a ratio of integers.

Solution. We have

1.231 = 1.2 +
31

1000
+

31
105

+
31
107

+ · · ·

=
6
5

+
∞∑

n=1

31
102n+1

=
6
5

+
31

1000

∞∑
n=1

(
1

100

)n−1

=
6
5

+
31

1000
· 1

1− 1
100

=
6
5

+
31
990

=
1219
990

.
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Example 11.4. (Telescoping sums) Determine the sum of the following series.

1.
∞∑

n=3

4
n2 − 4

. 2.
∞∑

n=1

n

(n + 1)!
.

Solution. For the 1st example, we have

∞∑
n=3

4
n2 − 4

=
∞∑

n=3

(
1

n− 2
− 1

n + 2

)
=
(

1
1
− 1

5

)
+
(

1
2
− 1

6

)
+
(

1
3
− 1

7

)
+
(

1
4
− 1

8

)
+
(

1
5
− 1

9

)
+
(

1
6
− 1

10

)
+ · · ·

= 1 +
1
2

+
1
3

+
1
4

=
25
12

.

(we got the last equality by noticing that all the terms starting with 1/5 appear once with a +
and once with a − sign).

For the 2nd example, we have

∞∑
n=1

n

(n + 1)!
=
∞∑

n=1

(n + 1)− 1
(n + 1)!

=
∞∑

n=1

(
1
n!
− 1

(n + 1)!

)
=
(

1
1!
− 1

2!

)
+
(

1
2!
− 1

3!

)
+ · · · = 1.

Theorem 11.5. (Test for divergence) If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0, then the series∑
an is divergent.

Example 11.6. Is the series
∞∑

n=1

en

n4
convergent or divergent? What about

∞∑
n=1

(−n!)n

n4n
?

Solution. Using l’Hôpital’s rule we have

lim
n→∞

en

n4
= lim

n→∞

en

4n3
= lim

n→∞

en

12n2
= lim

n→∞

en

24n
= lim

n→∞

en

24
=∞,

hence by the Test of divergence we conclude that the series
∞∑

n=1

en

n4
is divergent.

We have

lim
n→∞

n!
n4

= lim
n→∞

n

n
· n

n− 1
· n

n− 2
· n

n− 3
· (n− 4)! = lim

n→∞
(n− 4)! =∞.

It follows that

lim
n→∞

(−n!)n

n4n
= lim

n→∞
(−1)n

(
n!
n4

)n

, hence does not exist.

From the test for Divergence, we conclude that
∞∑

n=1

(−n!)n

n4n
is divergent.

Example 11.7. Determine whether the series is absolutely convergent, conditionally convergent,
or divergent
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1.
∞∑

n=1

(−1)n n√
n3 + 1

.

2.
∞∑

n=1

arcsin(1/n2)

Solution. (1) Let

an =
n√

n3 + 1
=

1√
n3+1

n2

=
1√

n + 1
n2

.

The function f(x) = x +
1
x2

is eventually increasing:

f ′(x) = 1− 2
x3
≥ 0 for x ≥ 3

√
2.

Therefore 1√
f(x)

is eventually decreasing, and the same is true for the sequence an. It is clear that

limn→∞ an = 0, so the Alternating Series Test yields the convergence of the series
∑∞

n=1(−1)nan.
To test the absolute convergence, we use the Limit Comparison Theorem. We compare the

series
∑

an with
∑ 1√

n
. We have

lim
n→∞

an
1√
n

= lim
n→∞

n
√

n√
n3 + 1

= lim
n→∞

√
n3

n3 + 1
= 1.

Since
∑ 1√

n
is divergent by the p-series Test, we get the divergence of

∑
an. This says that

the series
∞∑

n=1

(−1)nan is not absolutely convergent, and since we’ve seen it is convergent, it has

to be conditionally convergent.
(2) This series has positive terms, so convergence and absolute convergence are equivalent.

We test its convergence using the Limit Comparison Theorem. We compare
∑

arcsin(1/n2)
with

∑ 1
n2 :

lim
n→∞

arcsin(1/n2)
1/n2

x=1/n2

= lim
x→0

arcsin x

x

l’Hôpital
= lim

x→0

1√
1− x2

= 1.

Since
∑ 1

n2 is convergent by the p-series test, we conclude that
∑

arcsin(1/n2) is also convergent.

Example 11.8. Find the values of c for which the following series converges.

∞∑
n=1

(
c

n
− 1

n + 1

)
Solution. We have

∞∑
n=1

(
c

n
− 1

n + 1

)
=
∞∑

n=1

(
c− 1

n
+

1
n
− 1

n + 1

)
=
∞∑

n=1

(
c− 1

n
+

1
n(n + 1)

)
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The p-series test (or telescoping) yields the convergence of the series
∑∞

n=1
1

n(n+1) . Since the
harmonic series is divergent, we see that the series

∞∑
n=1

(
c

n
− 1

n + 1

)
is convergent for c = 1, and divergent otherwise.

Example 11.9. Find a power series representation for the function and determine the interval
(for the 1st example) and radius (for both) of convergence

1. f(x) =
x3 + x2 − x + 1

x4 − 1
. 2. f(x) = x2 arcsin(x).

Solution. (1) We have

f(x) = (−1+x−x2−x3)
1

1− x4
= (−1+x−x2−x3)

∞∑
n=0

x4n =
∞∑

n=0

(−x4n+x4n+1−x4n+2−x4n+3).

Since the radius of convergence for
∑

x4n is 1, and the interval of convergence is (−1, 1), the
same is true for the power series representation for f(x).

(2) It suffices to determine the power series representation for arcsin(x). We have

arcsin(x)′ =
1√

1− x2
= (1− x2)−1/2 =

∞∑
n=0

(
−1/2

n

)
(−x2)n.

Integrating this equality we get

arcsin(x) =
∞∑

n=0

(
−1/2

n

)
(−1)n x2n+1

2n + 1
+ c.

Plugging in x = 0 we get c = 0. The radius of convergence for the binomial series is 1, hence
the same is true for the power series of arcsin(x). We get

f(x) = x2 arcsin(x) =
∞∑

n=0

(
−1/2

n

)
(−1)n x2n+3

2n + 1
.

Example 11.10. Determine the Maclaurin series for f(x) = sinh x and prove that it represents
f(x) for all values of x.

Solution. We have

f(x) =
ex − e−x

2
=

1
2

( ∞∑
n=0

xn

n!
−
∞∑

n=0

(−x)n

n!

)
=
∞∑

n=0

x2n+1

(2n + 1)!
.

The formula for f (n)(x) depends only on the parity of n, hence we can find a uniform bound for
all the derivatives of sinh x on any interval. Taylor’s inequality then proves that

f(x) = lim
n→∞

Tn(x) for all x

i.e. the Maclaurin series for f(x) represents f(x) for all values of x.
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Example 11.11. Find the first three nonzero terms in the Maclaurin series for

f(x) =
ex

1 + x
.

Solution. We have

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
+ · · ·

and
1

1 + x
=
∞∑

n=0

(−x)n = 1− x + x2 − x3 + · · ·

Therefore

ex

1 + x
= (1 + x +

x2

2
+

x3

6
+ · · · )(1− x + x2 − x3 + · · · )

= 1 · 1 + x(1 · (−1) + 1 · 1) + x2(1 · 1 + 1 · (−1) + (1/2) · 1)

+ x3(1 · (−1) + 1 · 1 + (1/2) · (−1) + (1/6) · 1) + · · ·

= 1 +
x2

2
− x3

3
+ · · ·

Example 11.12. For the given function f , do the following.
(a) Approximate f by a Taylor polynomial with degree n at the number a.
(b) Use Taylor’s inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x)

when x lies in the given interval.

f(x) = ln(1 + 2x), a = 1, n = 3, 0.5 ≤ x ≤ 1.5

Solution. We have
f(1) = ln(3),

f ′(x) =
2

1 + 2x
, f ′(1) =

2
3
,

f ′′(x) =
−4

(1 + 2x)2
, f ′′(1) =

−4
9

,

f ′′′(x) =
16

(1 + 2x)3
, f ′′′(1) =

16
27

,

f (4)(x) =
−96

(1 + 2x)4
.

It follows that

T3(x) =
3∑

n=0

f (n)(x)
n!

(x− 1)n = ln(3) +
2
3

(x− 1)− 2
9

(x− 1)2 +
8
81

(x− 1)3.

We estimate the accuracy of the approximation f(x) ≈ T3(x) via Taylor’s inequality:

|f(x)− T3(x)| ≤ M

4!
|x− 1|4,
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where M is such that
|f (4)(x)| ≤M for 0.5 ≤ x ≤ 1.5

We have
|f (4)(x)| = 96

(1 + 2x)4
≤ 96

(1 + 2 · 0.5)4
=

96
24

= 6,

so we can take M = 6. Also |x− 1| ≤ 0.5 = 1/2, hence |x− 1|4 ≤ 1/16. We get

|f(x)− T3(x)| ≤ 6
4!
· 1

16
=

1
64

, for 0.5 ≤ x ≤ 1.5
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