Worksheet 12

Claudiu Raicu

October 12, 2009

1. For which values of p is the series

$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$$

convergent?

2. How many terms of the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{2^n n}$ would you need to add to find its sum to within 0.001?

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

3.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.
4. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$.
5. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}}$.
6. $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$.

Test the series for convergence or divergence

8.
$$\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdots (3n+2)} \cdot 10. \quad \sum_{n=1}^{\infty} \tan(1/n).$$
 12.
$$\sum_{n=1}^{\infty} (\sqrt[n]{3}-1).$$

9.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}.$$
 11.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^n}{n^{4n}}.$$