Worksheet 23

Claudiu Raicu

November 30, 2009

Spring system		Electric circuit	
х	displacement	Q	charge
dx/dt	velocity	I = dQ/dt	current
m	mass	L	inductance
c	damping constant	R	resistance
k	spring constant	1/ <i>C</i>	elastance
F(t)	external force	E(t)	electromotive force

$$mx'' + cx' + kx = F(t)$$
 $LQ'' + RQ' + \frac{1}{C}Q = E(t)$

- 1. A force of 13 N is needed to keep a spring with a 2-kg mass stretched 0.25m beyond its natural length. The damping constant of the spring is c = 8. If the mass starts at the equilibrium position with a velocity of 0.5 m/s, find its position at time t.
- 2. Suppose a spring has mass m and spring constant k and let $\omega = \sqrt{k/m}$. Suppose that the damping constant is so small that the damping force is negligible. If an external force $F(t) = F_0 \cos(\omega_0 t)$ is applied, where $\omega_0 \neq \omega$, use the method of undetermined coefficients to show that the motion of the mass is described by the equation

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) + \frac{F_0}{m(\omega^2 - \omega_0^2)} \cos(\omega_0 t).$$

3. A series circuit contains a resistor with $R=24\Omega$, an inductor with L=2H, a capacitor with C=0.005F, and a 12V battery. The initial charge is Q=0.001C and the initial current is 0. Find the charge and current at time t.

1

- 4. Use power series to solve the differential equation
 - (a) y'' + xy' + y = 0
 - (b) y'' = xy
 - (c) $y'' + x^2y' + xy = 0$, y(0) = 0, y'(0) = 1