Worksheet 6

Claudiu Raicu

September 21, 2009

I. Find the length of the curves

- 1. $y = \sqrt{x x^2} + \sin^{-1}(\sqrt{x}), \ 0 \le x \le 1.$
- 2. $y = \ln\left(\frac{e^x + 1}{e^x 1}\right), \ a \le x \le b, \ a > 0.$
- 3. $y = \int_0^x \sqrt{t^3 1} dt, \ 1 \le x \le 4.$
- 4. Find the arc length function for the curve $y = 2x^{3/2}$ with starting point $P_0(1,2)$.

II. Find the area of the surface obtained by rotating

- 5. The curve $y = \sin(\pi x), 0 \le x \le 1$ about the x-axis.
- 6. The curve $x = \sqrt{a^2 y^2}$, $0 \le y \le a/2$ about the y-axis.
- 7. The curve $y = \frac{1}{4}x^2 \frac{1}{2}\ln(x), 1 \le x \le 2$ about the *y*-axis.
- 8. The infinite curve $y = e^{-x}$, $x \ge 0$ about the x-axis.

III. Find the centroid of the region bounded by the curves

9.
$$y = x^2$$
 and $x = y^2$.

- 10. y = 1/x, y = 0, x = 1, x = 2.
- 11. A large tank is designed with ends in the shape of the region between the curves $y = \frac{1}{2}x^2$ and y = 12, measured in feet. Find the hydrostatic force on one end of the tank if it is filled to a depth of 8 ft with gasoline. (Assume the gasoline's density is 42.0 lb/ft³.)
- 12. Use the Theorem of Pappus to find the volume of a cone with height h and base radius r.