Math 1B, Section 110, Fall "09
Quiz 5, October 7 Name:

SID:

Show all work clearly and in order! You have 15 minutes to take this quiz.

1. (4 points) Determine whether the series
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is convergent or divergent. If it is convergent, find its sum.

Solution. We have
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2. (3 points) Determine the values of p for which the series
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is convergent.
Solution. Answer: p > 1. See Stewart, Example 2, Section 11.3. O

3. (3 points) Show that if a, > 0 and lim nsin(a,) # 0, then Z an is divergent.
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(Hint: First show that > sin(a,,) is divergent by comparing it to the harmonic series, and

then conclude that ) a,, is also divergent.)

Solution. We have

0 # lim nsin(a,) = lim w.
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Using the limit comparison test and the fact that Z— is divergent, it follows that
n

> sin(ay,) is also divergent.

If > a, was convergent, it would follow that lim,_,~ a, = 0. Therefore
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and using the comparison test once again we would get that > sin(a,) is convergent,
contradicting the conclusion of the preceding paragraph. In conclusion, Y a,, is divergent.
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