Worksheet 11

Claudiu Raicu

April 26, 2010

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

- 1. $y'' + y = e^x + x^3$.
- 2. $y'' 4y = e^x \cos(x), \ y(0) = 1, \ y'(0) = 2.$

Solve the differential equation using the method of variation of parameters.

3. $y'' + y = \sec^3(x), \ 0 < x < \pi/2.$

4.
$$y'' + 3y' + 2y = \sin(e^x)$$
.

Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters.

5.
$$y'' - 2y' - 3y = x + 2$$
.

6.
$$y'' - y' = e^x$$
.

Spring system		Electric circuit	
x	displacement	Q	charge
dx/dt	velocity	I = dQ/dt	current
m	mass	L	inductance
c	damping constant	R	resistance
k	spring constant	1/C	elastance
F(t)	external force	E(t)	electromotive force

$$mx'' + cx' + kx = F(t) LQ'' + RQ' + \frac{1}{C}Q = E(t)$$

- 7. A force of 13 N is needed to keep a spring with a 2-kg mass stretched 0.25m beyond its natural length. The damping constant of the spring is c = 8. If the mass starts at the equilibrium position with a velocity of 0.5m/s, find its position at time t.
- 8. Suppose a spring has mass m and spring constant k and let $\omega = \sqrt{k/m}$. Suppose that the damping constant is so small that the damping force is negligible. If an external force $F(t) = F_0 \cos(\omega_0 t)$ is applied, where $\omega_0 \neq \omega$, use the method of undetermined coefficients to show that the motion of the mass is described by the equation

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) + \frac{F_0}{m(\omega^2 - \omega_0^2)} \cos(\omega_0 t).$$

- 9. A series circuit contains a resistor with $R = 24\Omega$, an inductor with L = 2H, a capacitor with C = 0.005F, and a 12V battery. The initial charge is Q = 0.001C and the initial current is 0. Find the charge and current at time t.
- 10. Use power series to solve the differential equation
 - (a) y'' + xy' + y = 0
 - (b) y'' = xy
 - (c) $y'' + x^2y' + xy = 0, y(0) = 0, y'(0) = 1$