
Worksheet 11 - Solutions

Claudiu Raicu

April 26, 2010

1. We first solve the complementary equation y′′+y = 0. This has auxiliary equation r2 +1
with roots ±i, so its solutions are given by

yc = c1 cos(x) + c2 sin(x).

We split the problem of finding a particular solution to our original equation into two
parts, corresponding to the two terms ex and x3. We look for yp1 , yp2 solutions of

y′′ + y = ex and y′′ + y = x3

respectively. Taking
yp1 = Aex

we get
Aex + Aex = ex,

so A = 1/2 and yp1 = ex/2. Taking

yp2 = Bx3 + Cx2 + Dx + E

we get
(6Bx + 2C) + (Bx3 + Cx2 + Dx + E) = x3.

Equating the coefficients of the various powers of x we obtain

2C + E = 0, 6B + D = 0, C = 0, B = 1

which gives D = −6 and E = 0, so

yp2 = x3 − 6x.

It follows that a particular solution to our equation is given by

yp = yp1 + yp2 =
ex

2
+ x3 − 6x

and the general solution is

y = yp + yc =
ex

2
+ x3 − 6x + c1 cos(x) + c2 sin(x).
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2. We first solve the complementary equation y′′ − 4y = 0. This has auxiliary equation
r2 − 4 with roots ±2, so its solutions are given by

yc = c1e
2x + c2e

−2x.

We now look for a particular solution yp of our original equation of the form

yp = ex(A cos(x) + B sin(x)).

We have

y′p = ex(A cos(x) + B sin(x)−A sin(x) + B cos(x))

= ex[(A + B) cos(x) + (B −A) sin(x)].

y′′p = ex[(A + B) cos(x) + (B −A) sin(x)− (A + B) sin(x) + (B −A) cos(x)]

= ex(2B cos(x)− 2A sin(x)).

We must have

ex cos(x) = y′′p − 4yp = ex[(2B cos(x)− 2A sin(x))− 4(A cos(x) + B sin(x))]

= ex[(2B − 4A) cos(x) + (−2A− 4B) sin(x)]

which yields
2B − 4A = 1, −2A− 4B = 0.

Solving the system of equations we get A = −1/5 and B = 1/10, so

yp = ex · −2 cos(x) + sin(x)
10

.

It follows that the general solution is

y = yp + yc = ex · −2 cos(x) + sin(x)
10

+ c1e
2x + c2e

−2x.

To determine c1, c2 we use the initial conditions: y(0) = 1 yields

c1 + c2 =
6
5

and y′(0) = 2 yields

2c1 − 2c2 =
21
10

.

Solving the system of equations we get c1 = 9/8 and c2 = 3/40, so

y = ex · −2 cos(x) + sin(x)
10

+
9
8
e2x +

3
40

e−2x.

3. We first solve the complementary equation y′′+y = 0. This has auxiliary equation r2 +1
with roots ±i, so its solutions are given by

yc = c1 cos(x) + c2 sin(x).

We now vary the parameters to get a particular solution yp of our original equation. We
take

yp = u1y1 + u2y2



where y1 = cos(x), y2 = sin(x) and u′1, u
′
2 satisfy the system of equations{

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = sec3(x)

We rewrite the system as{
u′1 cos(x) + u′2 sin(x) = 0
u′1(− sin(x)) + u′2 cos(x) = sec3(x)

Multiplying the first equation by sin(x) and the second one by cos(x), and adding, we
obtain

u′2 = u′2(sin2(x) + cos2(x)) = sec2(x),

thus
u2 =

∫
sec2(x)dx = tan(x).

We have
u′1 = −u′2 tan(x) = − tan(x) sec2(x)

so

u1 =
∫

(− tan(x) sec2(x))dx = −tan2(x)
2

(where the last equality follows by making the substitution u = tan(x)). Substituting
back into the formula of yp we get

yp = −tan2(x)
2

cos(x) + tan(x) · sin(x) =
sin2(x)
2 cos(x)

.

The general solution is therefore

y = yp + yc =
sin2(x)
2 cos(x)

+ c1 cos(x) + c2 sin(x).

4. We first solve the complementary equation y′′+3y′+2y = 0. This has auxiliary equation
r2 + 3r + 2 with roots −1 and −2, so its solutions are given by

yc = c1e
−x + c2e

−2x.

We now vary the parameters to get a particular solution yp of our original equation. We
take

yp = u1y1 + u2y2

where y1 = e−x, y2 = e−2x and u′1, u
′
2 satisfy the system of equations{

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = sin(ex)

We rewrite the system as{
u′1e
−x + u′2e

−2x = 0
u′1(−e−x) + u′2(−2e−2x) = sin(ex)



Adding the two equations we obtain

−u′2e
−2x = sin(ex),

or equivalently
u′2 = −e2x sin(ex).

It follows that
u2 =

∫
(−e2x sin(ex))dx = ex cos(ex)− sin(ex)

(this follows from the substitution u = ex). We have

u′1 = −u′2e
−x = ex sin(ex)

so
u1 =

∫
(ex sin(ex))dx = − cos(ex)

(again by the substitution u = ex). Substituting back into the formula of yp we get

yp = − cos(ex)e−x + (ex cos(ex)− sin(ex))e−2x = − sin(ex)e−2x

The general solution is therefore

y = yp + yc = − sin(ex)e−2x + c1e
−x + c2e

−2x.

7. The spring constant k is given by

k · 0.25 = 13 ⇔ k = 52,

so the equation for displacement is

2x′′ + 8x′ + 52 = 0

(notice that F (t) = 0 since there’s no force acting). Since the mass starts at equilibrium,
we must have x(0) = 0. The velocity is the derivative of displacement, so x′(0) = 0.5.

We divide by 2 and rewrite the equation as

x′′ + 4x′ + 26 = 0.

The auxiliary equation r2 + 4r + 26 has roots −2± i
√

22, so its general solution is given
by

x = e−2t(c1 cos(
√

22t) + c2 sin(
√

22t)).

The initial conditions yield

0 = x(0) = c1 and 0.5 = x′(0) = −2c1 +
√

22c2,

so c1 = 0, c2 = 1/(2
√

22). We get

x(t) =
1

2
√

22
sin(
√

22t)e−2t.



8. Since the damping force is negligible, we may assume that c = 0. The equation for
displacement is then

mx′′ + kx = F (t)

which after dividing by m becomes

x′′ + ω2x =
F0

m
cos(ω0t).

We first solve the complementary equation, whose auxiliary equation r2 + ω2 = 0 has
roots ±iω. Its solutions are then given by

xc = c1 cos(ωt) + c2 sin(ωt).

We now look for a particular solution xp of the original equation. We take xp of the form

xp = A cos(ω0t) + B sin(ω0t)

(notice that if ω0 was equal to ω this wouldn’t work, and we would have had to replace
xp by txp). We want xp to satisfy

x′′p + ω2xp =
F0

m
cos(ω0t).

Notice that since xp is a linear combination of sin(ω0t) and cos(ω0t), it satisfies the
differential equation x′′p = −ω2

0xp, so we can rewrite the above relation as

(ω2 − ω2
0)xp = (ω2 − ω2

0)(A cos(ω0t) + B sin(ω0t)) =
F0

m
cos(ω0t).

This says that (ω2 − ω2
0)A = F0/m and (ω2 − ω2

0)B = 0, yielding B = 0 and A =
F0/(m · (ω2 − ω2

0)). We get

xp =
F0

m(ω2 − ω2
0)

cos(ω0t).

The general solution to the original equation is therefore

x = xp + xc =
F0

m(ω2 − ω2
0)

cos(ω0t) + c1 cos(ωt) + c2 sin(ωt).

9. The differential equation for charge is

2Q′′ + 24Q′ +
1

0.005
Q = 12.

The initial conditions are Q(0) = 0.001 and Q′(0) = I(0) = 0. We divide by 2 and
rewrite our equation as

Q′′ + 12Q′ + 100Q = 6.

We first solve the complementary equation, whose auxiliary equation r2 + 12r + 100 = 0
has roots −6± 8i. Its solutions are then given by

Qc = e−6t(c1 cos(8t) + c2 sin(8t)).



We now look for a particular solution Qp of the nonhomogeneous equation. We take Qp

of the form
Qp = A

which yields
100A = 6 ⇔ A = 3/50.

The general solution of the equation is then

Q = Qp + Qc =
3
50

+ e−6t(c1 cos(8t) + c2 sin(8t)).

The initial conditions yield

0.001 = Q(0) =
3
50

+ c1 and 0 = Q′(0) = −6c1 + 8c2.

Solving the system of equations we get c1 = 1/1000 − 3/50 = −59/1000 and c2 =
(3/4)c1 = −177/4000, so

Q(t) =
3
50
− e−6t 236 cos(8t) + 177 sin(8t)

4000
.

10. We look for a power series solution

y =
∞∑

n=0

cnxn.

This has

y′ =
∞∑

n=1

ncnxn−1

and

y′′ =
∞∑

n=2

n(n− 1)cnxn−2.

(a) We rewrite the equation as

∞∑
n=2

n(n− 1)cnxn−2 + x
∞∑

n=1

ncnxn−1 +
∞∑

n=0

cnxn = 0,

or
∞∑

n=2

n(n− 1)cnxn−2 +
∞∑

n=1

ncnxn +
∞∑

n=0

cnxn = 0.

We reindex the first sum to make the exponent of x equal to n. That is, we replace n by
n + 2, so the initial value n = 2 becomes n + 2 = 2⇔ n = 0. We get

∞∑
n=0

(n + 2)(n + 1)cn+2x
n +

∞∑
n=1

ncnxn +
∞∑

n=0

cnxn = 0.

Separating out the n = 0 terms in the first and third sums and combining the sums
together, we get

c2 + c0 +
∞∑

n=1

((n + 2)(n + 1)cn+2 + ncn + cn) xn = 0.



Equating the coefficients of the power series on the LHS to zero, we obtain{
2c2 + c0 = 0
(n + 2)(n + 1)cn+2 + (n + 1)cn = 0 for n ≥ 1

which is the same as {
c2 = −c0/2
cn+2 = −1

n+2cn = 0 for n ≥ 1

We see that there’s no condition on c0 and c1, and that all the other terms can be
calculated from the two as follows. We have c2 = −c0/2,

c3 =
−1
3

c1 =
−1
1 · 3

c1

c4 =
−1
4

c2 =
(−1)2

2 · 4
c0

c5 =
−1
5

c3 =
(−1)2

1 · 3 · 5
c1

c6 =
−1
6

c2 =
(−1)3

2 · 4 · 6
c0

c7 =
−1
7

c2 =
(−1)3

1 · 3 · 5 · 7
c1

· · ·

We see that there are two distinct patterns, one for the even terms, and one for the odd
terms, namely

c2k =
(−1)k

2 · 4 · · · (2k)
c0

and

c2k+1 =
(−1)k

1 · 3 · 5 · · · (2k + 1)
c1,

and these formulas are accurate for all values of k ≥ 0. We get

y =
∞∑

n=0

cnxn =
∞∑

k=0

c2kx
2k +

∞∑
k=0

c2k+1x
2k+1

= c0

∞∑
k=0

(−1)k

2 · 4 · · · (2k)
x2k + c1

∞∑
k=0

(−1)k

1 · 3 · 5 · · · (2k + 1)
x2k+1.

If you prefer, you can rewrite the coefficients c2k, c2k+1 as

c2k =
(−1)k

2k · k!
c0

and

c2k+1 =
(−1)k · 2 · 4 · 6 · · · (2k)

1 · 2 · 3 · · · (2k) · (2k + 1)
c1 =

(−2)k · k!
(2k + 1)!

c1.

(b) We rewrite the equation as

∞∑
n=2

n(n− 1)cnxn−2 = x

∞∑
n=0

cnxn = 0,



or
∞∑

n=2

n(n− 1)cnxn−2 =
∞∑

n=0

cnxn+1.

We reindex the sum on the LHS to make the exponent of x equal to n + 1. That is, we
replace n by n + 3, so the initial value n = 2 becomes n + 3 = 2⇔ n = −1. We get

∞∑
n=−1

(n + 3)(n + 2)cn+3x
n+1 =

∞∑
n=0

cnxn+1.

The n = −1 term on the LHS has to be 0, since there’s no corresponding term on the
RHS. Therefore

(−1 + 3)(−1 + 2)c0 = 0⇔ c0 = 0

and
∞∑

n=0

(n + 3)(n + 2)cn+3x
n+1 =

∞∑
n=0

cnxn+1.

The coefficients of xn+1 have to match, therefore

(n + 3)(n + 2)cn+3 = cn for n ≥ 0,

or equivalently

cn+3 =
1

(n + 2)(n + 3)
cn for n ≥ 1.

We see that there is no condition on c1, c2, and all the other terms can be written in
terms of the two. We have

c3 =
1

2 · 3
c0 = 0

c4 =
1

3 · 4
c1

c5 =
1

4 · 5
c2

c6 =
1

5 · 6
c3 = 0

c7 =
1

6 · 7
c4 =

1
3 · 4 · 6 · 7

c1

c8 =
1

7 · 8
c5 =

1
4 · 5 · 7 · 8

c2

· · ·

We see that there are three distinct patterns, corresponding to terms of the form 3k, 3k+1
and 3k + 2 respectively, namely

c3k = 0,

c3k+1 =
1

3 · 4 · 6 · 7 · · · (3k)(3k + 1)
c1

and
c3k+2 =

1
4 · 5 · 7 · 8 · · · (3k + 1)(3k + 2)

c2.



The formulas for c3k+1 and c3k+2 are accurate for k ≥ 1 (for k = 0 they’re ambiguous),
so we will separate out the terms corresponding to k = 0 in the formulas below. We have

y =
∞∑

n=0

cnxn =
∞∑

k=0

c3kx
3k +

∞∑
k=0

c3k+1x
3k+1 +

∞∑
k=0

c3k+2x
3k+2

= c1x +
∞∑

k=1

c3k+1x
3k+1 + c2x

2 +
∞∑

k=1

c3k+2x
3k+2

= c1x + c2x
2 + c1

∞∑
k=1

1
3 · 4 · 6 · 7 · · · (3k)(3k + 1)

x3k+1

+ c2

∞∑
k=1

1
4 · 5 · 7 · 8 · · · (3k + 1)(3k + 2)

x3k+2.

(c) See http://persson.berkeley.edu/1B/sol174.pdf


