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We first solve the complementary equation 3” +y = 0. This has auxiliary equation r% + 1
with roots 41, so its solutions are given by

Yo = ¢1 cos(x) + e sin(x).

We split the problem of finding a particular solution to our original equation into two
parts, corresponding to the two terms e® and z3. We look for Yp1» Yp, solutions of

y"+y:exandy”+y:x3

respectively. Taking
Yp, = Ae”

we get
Ae® + Ae® = e,

so A=1/2 and y,, = e"/2. Taking
Yp, = B3 + Ca® + Dx + E

we get
(6Bx 4 2C) + (Bx® + Cx* + Dz + E) = 2.

Equating the coefficients of the various powers of  we obtain
2C+FE=0, 6B+D=0, C=0, B=1
which gives D = —6 and F = 0, so
Ypo = 2% — 6.

It follows that a particular solution to our equation is given by

et 3
yp:yp1+yp2:?+$ — 6z

and the general solution is

xz

6 .
Y=Y TYe= 5T 23 — 62 + ¢1 cos(x) + ¢y sin(x).



2. We first solve the complementary equation y” — 4y = 0. This has auxiliary equation
r? — 4 with roots 42, so its solutions are given by

Yo = 1627 4 coe™ 7.

We now look for a particular solution y, of our original equation of the form
yp = e”(Acos(z) + Bsin(x)).
We have
y, = €"(Acos(z) + Bsin(x) — Asin(x) + B cos(z))
= e”[(A+ B)cos(z) + (B — A) sin(x)].
Yy, = €*[(A+ B)cos(z) + (B — A)sin(z) — (A + B) sin(x) + (B — A) cos(x)]
= e*(2B cos(x) — 2Asin(z)).
We must have

e” cos(x) =y, — 4yp = e”[(2B cos(x) — 2Asin(x)) — 4(A cos(x) + Bsin(z))]
= €”[(2B — 4A) cos(z) + (—2A — 4B) sin(z)]

which yields
2B—4A=1, —-2A-4B=0.

Solving the system of equations we get A = —1/5 and B = 1/10, so

—2cos(x) + sin(z)
10 '

yp=¢e"-

It follows that the general solution is

—2cos(x) + sin(x)
10

+ 616236 + 626_2$.

Y=Yp+yc=¢e"-

To determine c;, co we use the initial conditions: y(0) = 1 yields

L
1 +ca=—
1+e=z
and y'(0) = 2 yields
21
261 — 2C2 = TO

Solving the system of equations we get ¢; = 9/8 and ¢ = 3/40, so

—2cos(x) +sin(z) 9 4 3
X . _ T _ T
10 g ¢

y=e
3. We first solve the complementary equation y” +y = 0. This has auxiliary equation r%+1
with roots 41, so its solutions are given by
Yo = c1 cos(x) + cosin(x).

We now vary the parameters to get a particular solution y, of our original equation. We
take

Yp = U1Y1 + U2Y2



where y; = cos(z), y2 = sin(z) and u}, u}, satisfy the system of equations

uiyr + upy2 =0
uh Yl + uhyh = sec3(z)
We rewrite the system as
{u’1 cos(x) + uhsin(x) = 0

uf (= sin(z)) + ub cos(x) = sec3(z)

Multiplying the first equation by sin(z) and the second one by cos(x), and adding, we
obtain
ulhy = uh(sin?(z) + cos?(z)) = sec?(z),

thus
ug = /SGCQ(LL’)dCL‘ = tan(z).
We have
u) = —ub tan(z) = — tan(z) sec?(x)
S0
_tanz(x)

up = /(—tan(x) sec?(x))dx =

(where the last equality follows by making the substitution u = tan(x)). Substituting
back into the formula of ¥, we get

2

tan?(z) sin?(x)

2 cos(z)

Yp = — cos(x) + tan(zx) - sin(z) =

The general solution is therefore

sin?(x)

2 cos(z)

Y=Y+t Y= + c1 cos(x) + casin(x).

We first solve the complementary equation y” 4+ 33’ +2y = 0. This has auxiliary equation
r? + 3r + 2 with roots —1 and —2, so its solutions are given by

Ye = cre” % + coe” 2%,

We now vary the parameters to get a particular solution y, of our original equation. We
take

Yp = U1Y1 + U2Y2

x

where y; = e, yo = e 2% and u}, v}, satisfy the system of equations

uyy1 + upy2 = 0
)y + ubyh = sin(e?)

We rewrite the system as

uhe™® + uhe ™ =0
uf (—e™®) + ub(—2e72%) = sin(e?)



Adding the two equations we obtain

—ube 2 = sin(e”),

or equivalently

uh = —e** sin(e”).

It follows that
ug = /(—622: sin(e”))dz = e® cos(e”) — sin(e”)
(this follows from the substitution u = e*). We have
uy = —uhe ™ = e” sin(e”)
SO
up = /(ex sin(e®))dx = — cos(e”)
(again by the substitution u = e*). Substituting back into the formula of y, we get

—2z —2z

yp = —cos(e®)e” " + (e cos(e”) — sin(e”))e”** = —sin(e”)e

The general solution is therefore

Y=Yp+Ye=— sin(e®)e 2% 4+ ¢1e™% 4 cpe 22,

The spring constant k is given by
k-025=13 <& k=052,
so the equation for displacement is
22" + 82 +52=0

(notice that F(t) = 0 since there’s no force acting). Since the mass starts at equilibrium,
we must have x(0) = 0. The velocity is the derivative of displacement, so z'(0) = 0.5.

We divide by 2 and rewrite the equation as
2’ + 42" +26 = 0.

The auxiliary equation 72 + 4r + 26 has roots —2 4 +/22, so its general solution is given
by
x = e 2(cy cos(V22t) 4 ¢ sin(v/22t)).

The initial conditions yield
0=x(0) = ¢; and 0.5 = 2/(0) = —2¢1 + V22¢o,

soc; =0, c0=1/(2v22). We get

1

sin(v 22t e 2t
2422 ( )

x(t) =




8. Since the damping force is negligible, we may assume that ¢ = 0. The equation for
displacement is then
ma” + kx = F(t)

which after dividing by m becomes
F
2" 4wz =2 cos(wot).
m

We first solve the complementary equation, whose auxiliary equation 72 4+ w? = 0 has
roots tiw. Its solutions are then given by

x. = c1 cos(wt) + co sin(wt).
We now look for a particular solution z, of the original equation. We take x,, of the form
xp = Acos(wot) + B sin(wot)
(notice that if wy was equal to w this wouldn’t work, and we would have had to replace
xp by tzp). We want x, to satisfy

F
" 2., _ 10
T, +wT, = p cos(wot).

Notice that since x, is a linear combination of sin(wpt) and cos(wot), it satisfies the

differential equation I‘Z = —wdx,, S0 we can rewrite the above relation as

F
(W? — w)mp = (W? — W) (A cos(wot) + Bsin(wot)) = =0 cos(wot).
m
This says that (w? — wd)A = Fy/m and (w? — wd)B = 0, yielding B = 0 and A =
Fo/(m - (w? —w})). We get
Fo

——  cos(wpt).
m(w? — w?) (wot)

Ty =
The general solution to the original equation is therefore

T=2xp+ T = cos(wot) + ¢1 cos(wt) + cg sin(wt).

m(w? — w3)
9. The differential equation for charge is

1
2Q" +24Q" + ——Q = 12.
@720 +0.005Q

The initial conditions are Q(0) = 0.001 and @'(0) = I(0) = 0. We divide by 2 and
rewrite our equation as

Q" +12Q" +100Q = 6.

We first solve the complementary equation, whose auxiliary equation 72 + 127 4100 = 0
has roots —6 £ 8¢. Its solutions are then given by

Qe = e 5 (c1 cos(8t) + ¢ sin(8t)).



10.

We now look for a particular solution ), of the nonhomogeneous equation. We take @,
of the form

Qp =A
which yields
100A=6 < A=3/50.

The general solution of the equation is then
3
Q=Qp+ Q= =t e (cy cos(8t) + ca sin(8t)).

The initial conditions yield

3
0.001 = Q(0) = 0 +c1 and 0 = Q'(0) = —6¢1 + 8co.

Solving the system of equations we get ¢; = 1/1000 — 3/50 = —59/1000 and ¢y =
(3/4)cy = —177/4000, so

3 ot 236 cos(8t) + 177 sin(8¢t)

Q) =55 4000

We look for a power series solution

D
n=0
This has
o
y/ _ Z ne,a" 1
n=1
and

n=2
(a) We rewrite the equation as
o o x
Z n(n — 1)cn;v”_2 4+ Z ne,a™ 1t + Z cpx” =0,
n=2 n=1 n=0
or
[o@) x oo
Z n(n — l)cnaz:”_2 + Z nepz” + Z cpx’ = 0.
n=2 n=1 n=0

We reindex the first sum to make the exponent of x equal to n. That is, we replace n by
n + 2, so the initial value n = 2 becomes n 4+ 2 =2 < n = 0. We get

(o @) x oo
Z(n +2)(n+ 1)cppox™ + Z nepx” + Z cpx’ = 0.
n=0 n=1 n=0

Separating out the n = 0 terms in the first and third sums and combining the sums
together, we get

oo
co + g+ Z ((n+2)(n+ Depga + nep + ) 2" = 0.

n=1



Equating the coeflicients of the power series on the LHS to zero, we obtain

2c0+cop=0
m+2)(n+Depg2+(n+1)c, =0 forn>1

which is the same as
coy = —cp/2
cn+2:n_—+lzcn:0 forn>1

We see that there’s no condition on ¢y and c¢;, and that all the other terms can be

calculated from the two as follows. We have co = —c(/2,
—1 —1
3= —C =-—=C
3= 3= 1739
-1 (—1)2
Cg ==
-1 (—1)2
BT E % 13"
-1 (—1)3
6= —Cy = c
767 2467
-1 (—1)3
7= —C = c
T T 1357

We see that there are two distinct patterns, one for the even terms, and one for the odd
terms, namely

and
(=D*
C =
T 185 (2k+ 1)

and these formulas are accurate for all values of k > 0. We get

C1,

[e.o] [e.9] o0

y= Z Cp” = Z cora®® + Z Coprp a2t
n=0 k=0 k=0
oo o0
_ D o (=1)F 2%+1
_0022.4...(%):3 +0121.3.5...(2k+1)$ '
k=0 k=0

If you prefer, you can rewrite the coefficients co, cop+1 as

—1)*
Cok = ;k-)klco
and
(—1)F.2-4-6---(2k) (—2)F . k!

Cc1 = Cq.

LT 03 (2k) - (2k+ 1) T (2k+ 1)

(b) We rewrite the equation as



or
00

Z n(n —1)epz™™ Z et

n=2
We reindex the sum on the LHS to make the exponent of x equal to n 4+ 1. That is, we
replace n by n 4 3, so the initial value n = 2 becomes n +3 =2 < n = —1. We get

o0
Z (n+3)(n+2)cpy3a™ ch
n=-—1
The n = —1 term on the LHS has to be 0, since there’s no corresponding term on the
RHS. Therefore
(=14+3)(-1+2)co=0<¢=0
and
[ee]
E(n +3)(n + 2)cpp gz Z cnz™t
n=0

The coefficients of "1 have to match, therefore
(n+3)(n+ 2)cpt3 = ¢y, for n >0,

or equivalently
1

(n+2)(n+3)
We see that there is no condition on c¢q, ¢y, and all the other terms can be written in
terms of the two. We have

Cnts = ¢y form > 1.

1
— o =0
c3 = o 300
1

Cq = mCl

787 4.5.7-87
We see that there are three distinct patterns, corresponding to terms of the form 3k, 3k+1
and 3k + 2 respectively, namely
csp =0,
1
BT 36T (3k)(Bk+ 1)

and
1

C3k+2:4.5,7.8...(3]{;+1)(3k‘+2)

co.



The formulas for csi41 and c3gyo are accurate for k£ > 1 (for £ = 0 they’re ambiguous),
so we will separate out the terms corresponding to k£ = 0 in the formulas below. We have

o (o) (o ¢] o0
_ n_ 3k 3k-+1 3k-+2
Y= E T = § C3pxT™" + E C3k+1% + § C3k+2T
n=0 k=0 k=0 k=0

o0 o0

k+1 2 k+2

=+ E a1+ con® + E Catp2z™ T
k=1 k=1

s 1
) , 3k+1
Cc12 + cax +61;3,4_6.7...(3k)(3k+1)x

- 1 3k+2
+02;4-5-7-8---(3k+1)(3k+2)$ ‘

(c) See http://persson.berkeley.edu/1B/sol174.pdf



