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1. The substitution 2 = 10tan @ yields de = 10sec? # and
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Now the substitution v = secf yields du = tan secf and

3
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We have x = 10tan @, so
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and therefore
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2. Completing the square we get t? — 6t + 13 = (t — 3)?> + 4. The substitution = ¢t — 3
yields
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The substitution x = 2 tan 6 yields
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We have tanf = z/2 = (t — 3)/2 and

secd = V1+tan20 = /1 + (2/2)2 = /1 + ((t — 3)/2)2,

hence
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3. Denote
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Our goal is to prove that

1 T 2n —1

fonl®) = 5 o o

I, (x).

Let’s try to compute I,(x) using integration by parts. We write the integrand as a
product in a trivial way:
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We integrate by parts letting u = m and dv = dx. We get v =z and

du = (352_4‘27;;“(1:6
so the formula
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Writing 22 = (22 + 1) — 1, we get
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hence
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We get from (*) that
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I, (x) = @r1n +2n(Ip(z) — Lti(x)) = @1 +2nl,(z) — 2nlp41(2)

Moving 2nl,1(x) to the LHS and I,,(z) to the RHS we obtain
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Dividing by 2n we get the desired formula.

We first complete the square: u? —2u + 2 = (u — 1)? + 1 and make the substitution
r=u—1. We get
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Now we use the method of partial fractions to write
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Solving for a,b,c,d we get a =1, b =2, c=1 and d = 0. Therefore
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The first two integrals are easy to compute: they are arctan(x) and In |22 +1| respectively.
For the last one, we use the reduction formula from the previous exercise with n = 1
(alternatively you could use the substitution x = tanf). We get
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but I;(x) = arctan(x), hence
x arctan(z)
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Putting everything together we obtain
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Going back to the variable u we obtain

2u® — 5u? + 6u — 1 u—1 3arctan(u — 1)
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Since the degree of the numerator is at least as large as the one of the denominator we
first perform long division. We get
ot —22% — 1422 + 10 10 + 10z — 22

= 14—
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We now factor the denominator to get 2® — 322 — 10z = x(x + 2)(z — 5). Using the
method of partial fractions, we write

10 + 10z — 22 a b c
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Solving for a, b, ¢ yields a = b = —1 and ¢ = 1. Therefore
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Adding the integral of z + 1 to this we obtain
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The substitution y = v/3z + 2 yields y? = 3z + 2, 2ydy = 3dz, hence

ATy 2 2
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Integration by parts with u =y, dv = eYdy yields v = e¥ and
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Therefore 5
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Make the substitution y = 22, dy = 2zdz to get
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Now make the substitution y = v/3siné to get dy = v/3 cos #df and
3cosf
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Going back to the variable = we get

df = 6 + C = arcsin(y/V/3) +

/ ﬁdm = %arcsin(x2/\/§) +C

Make the substitution y = &z to get = y3, dr = 3y*dy and
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dr = dy =
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Going back to the variable x we get
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Recall LIATE: z is Algebraic, sin(x)? cos(x) is Trigonometric. Use integration by parts
withu = x, dv = sin(x)? cos(x)dz. The first step is to compute v = [ dv = [ sin(x)? cos(z)dz.
The exponent of cos is odd, so we make the substitution w = sin(z) to get dw = cos(x)dz
and

v= /dew = w?/3 = sin®(z)/3

Going back to integration by parts we obtain

/ zsin(z)? cos(z)dr = uv — / vdu = “”;)3(:”) - / sin®(x)/3dx

Now since the exponent of sin is odd, we make the substitution w = cos(x), dw = — sin(z)
to get
-1 —w  w? —cos(z)  cos®(z)
.3 2
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Combining this with the previous relations yields
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10. The integrand has the form f(x)In(z) where f(z) =

x
———— is an Algebraic function.
va? —1

1
We use integration by parts with v = In(z), dv = f(z)dz, du = —dx. The first step is to
x

v:/f(x)da::/\/a%dx

The substitution x = sec 8 yields dx = tan 0 sec 6df

v:/SecetaanecHdH—/se020d0:tan9:\/372—1

tan 6

integrate f:

Going back to integration by parts we get
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To integrate ———— we can use one of the following methods
x

Method 1 Use the substitution z = sec(#). This gives dx = tan(f) sec(0)df, vVa? — 1 =
tan(0), and therefore

[ e [

= / tan’(0)df = / (sec?(0) — 1)do
=tan(f) — 0+ C = +x? —1—sec” +C.

Method 2 Use the substitution y = /22 — 1. This gives 4> = 22 — 1, and after differ-
entiating 2ydy = 2xdx. Therefore
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:/(1— y2+1)dy:y—tan_1(y)+C: V2 —1—tan (/22 — 1) + C.

tan(0) sec(0)do

Putting together all of the above, we get that

j;;lL \/a:2 1—\/3:2—1+tan71( z? —1)+C.



