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1. We have
y′(x) =

1
ex+1
ex−1

· e
x(ex − 1)− (ex + 1)ex

(ex − 1)2
=
−2ex

e2x − 1

hence

1 + (y′(x))2 = 1 +
4e2x

(e2x − 1)2
=

(e2x + 1)2

(e2x − 1)2
.

We get

L =
∫ b

a

√
1 + (y′(x))2dx =

∫ b

a

e2x + 1
e2x − 1

dx =
∫
ex + e−x

ex − e−x
dx

(where the last equality comes from dividing both numerator and denominator by ex).
Now since

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
,

we see that

L =
∫ b

a

cosh(x)
sinh(x)

dx

Making the substitution u = sinh(x) we get du = cosh(x)dx and therefore

L =
∫ sinh(b)

sinh(a)

du

u
= [ln |u|]sinh(b)

sinh(a) = ln
∣∣∣∣ sinh(b)
sinh(a)

∣∣∣∣ = ln
∣∣∣∣ eb − e−bea − e−a

∣∣∣∣
2. We have y′(x) =

√
x3 − 1, so 1 + (y′(x))2 = x3. We get

L =
∫ 4

1

√
x3dx =

[
2
5
x5/2

]4

1

=
2
5

(32− 1) =
62
5

3. Let s denote the arc length function. We have

s(x) =
∫ x

0

√
1 + (y′(t))2dt.

Since
y′(t) =

1√
1− t2

− t√
1− t2

,

we get √
1 + (y′(t))2 =

√
1 +

(1− t)2
1− t2

=

√
1 +

1− t
1 + t

=

√
2

1 + t
.

It follows that

s(x) =
∫ x

0

√
2(1 + t)−1/2dt =

√
2(2(1 + t)1/2)|x0 = 2

√
2(
√

1 + x− 1).

1



4. Let s denote the arc length function. We have

s(x) =
∫ x

1

√
1 + (y′(t))2dt.

Since
y′(t) = 2 · 3

2
· t1/2 = 3

√
t,

we get √
1 + (y′(t))2 =

√
1 + 9t.

It follows that

s(x) =
∫ x

1

√
1 + 9tdt =

[
2
3
· (1 + 9t)3/2

9

]x
1

=
2(1 + 9x)3/2

27
− 2(10)3/2

27

5. For rotation about the x-axis, the surface area formula is

S =
∫

2πyds = 2π
∫ 1

0
y(x)

√
1 +

(
dy

dx

)2

dx

We have
dy

dx
= π cos(πx)

We get

S = 2π
∫ 1

0
sin(πx)

√
1 + (π cos(πx))2dx

We make the substitution u = π cos(πx) to get du = −π2 sin(πx)dx, or sin(πx)dx =
−du/π2 and

S = 2π
∫ −π
π

−
√

1 + u2

π2
du =

2
π

∫ π

−π

√
1 + u2du

(notice that we got rid of the ’–’ sign by interchanging the limits of integration). Since√
1 + u2 is an even function, we get

S =
4
π

∫ π

0

√
1 + u2du

To compute
∫ √

1 + u2du we use the substitution u = tan θ, du = sec2 θdθ. We get∫ √
1 + u2du =

∫
sec3 θdθ

To compute this, use integration by parts v = sec θ, dw = sec2 θ, which gives w = tan θ
and dv = tan θ sec θdθ. We get∫

sec3 θdθ = vw −
∫
wdv = sec θ tan θ −

∫
tan2 sec θdθ

= sec θ tan θ −
∫

(sec2 θ − 1) sec θdθ = sec θ tan θ −
∫

sec3 θdθ +
∫

sec θdθ

= sec θ tan θ + ln | sec θ + tan θ| −
∫

sec3 θdθ



Moving
∫

sec3 θdθ to the LHS and dividing by 2 we get∫
sec3 θdθ =

1
2

(sec θ tan θ + ln | sec θ + tan θ|)

Going back to the variable u, we have∫ √
1 + u2du =

1
2

(u
√

1 + u2 + ln |u+
√

1 + u2|)

It follows that

S =
4
π

∫ π

0

√
1 + u2du =

4
π
· 1

2
[u
√

1 + u2 + ln |u+
√

1 + u2|]π0

=
2
π

(π
√

1 + π2 + ln |π +
√

1 + π2|)

6. For rotation about the y-axis, the surface area formula is

S =
∫

2πxds = 2π
∫ 1

0
x

√
1 +

(
dy

dx

)2

dx

= 2π
∫ 1

0
x
√

1 + 4x2dx.

The substitution u = 4x2 yields du = 8xdx, hence

S =
2π
8

∫ 4

0

√
1 + udu =

π

4
· 2

3
(1 + u)3/2|40 =

π

6
(53/2 − 1).

Notice that instead of the substitution u = 4x2 you could have used the trig substitution
x = 1

2 tan θ.

7. For rotation about the y-axis, the surface area formula is

S =
∫

2πxds = 2π
∫ 2

1
x

√
1 +

(
dy

dx

)2

dx

We have
dy

dx
=
x

2
− 1

2x
so

1 +
(
dy

dx

)2

= 1 +
(
x2

4
− 2

x

2
1

2x
+

1
4x2

)
=
(
x

2
+

1
2x

)2

We get

S = 2π
∫ 2

1
x

(
x

2
+

1
2x

)
dx = 2π

[
x3

6
+
x

2

]2

1

= 2π
(

23 − 13

6
+

1
2

)
=

10π
3

8. For rotation about the x-axis, the surface area formula is

S =
∫

2πyds = 2π
∫ ∞

0
y(x)

√
1 +

(
dy

dx

)2

dx



We have y′(x) = −e−x, so

S = 2π
∫ ∞

0
e−x
√

1 + e−2xdx

The substitution u = e−x, du = −e−xdx yields e−xdx = −du and (since e−0 = 1,
e−∞ = 0)

S = 2π
∫ 0

1
−
√

1 + u2du = 2π
∫ 1

0

√
1 + u2du

= 2π
1
2

[u
√

1 + u2 + ln |u+
√

1 + u2|]10 = π(
√

2 + ln |1 +
√

2|)

(here we used the calculation of
∫ √

u2 + 1du from problem 5).

9. The region bounded by the curves y = x3, x+ y = 2, y = 0 is the region under the graph
of f (see the figure below), where

f(x) =
{
x3, 0 ≤ x ≤ 1;
2− x, 1 ≤ x ≤ 2.

The coordinates (x, y) of the centroid are given by

x =
1
A

∫ 2

0
xf(x)dx, y =

1
A

∫ 2

0

1
2
f(x)2dx,

where A is the area below the graph of f ,

A =
∫ 2

0
f(x)dx =

∫ 1

0
x3dx+

∫ 2

1
(2− x)dx =

x4

4
|10 −

(2− x)2

2
|21 =

1
4

+
1
2

=
3
4
.

We have∫ 2

0
xf(x)dx =

∫ 1

0
x4dx+

∫ 2

1
(2x− x2)dx =

x5

5
|10 + (x2 − x3

3
)|21 =

1
5

+
4
3
− 2

3
=

13
15
,

and ∫ 2

0
f(x)2dx =

∫ 1

0
x6dx+

∫ 2

1
(2− x)2dx =

x7

7
|10 −

(2− x)3

3
|21 =

1
7

+
1
3

=
10
21
.



It follows that
x =

4
3
· 13

15
=

52
45

and
y =

4
3
· 1

2
· 10

21
=

20
63
.

10. Assume the coordinate axes are such that the origin lives at the bottom of one end of the
tank. Then at level y, the length of the cross section of the end of the tank is l(y) = 2

√
2y.

We get

F = ρg

∫ 8

0
2
√

2y(8− y)dy = ρg

∫ 8

0
(29/2y1/2 − 23/2y3/2)dy

= ρg

[
29/2y3/2

3/2
− 23/2y5/2

5/2

]8

0

= ρg

(
210

3
− 2105

)
= ρg

211

15

11. Such a cone is obtained by rotating a right triangle with sides h, r,
√
h2 + r2 about an

axis containing the side of length h. Assuming the axis is the x-axis, and that the origin
is situated at the vertex of the triangle which is the intersection of the hypothenuse with
the side of length h, we get that the coordinates of the centroid are

x =
0 + h+ h

3
=

2h
3
, y =

0 + 0 + r

3
=
r

3

The centroid then moves on a circle of radius r/3. Using the fact that the area of the
triangle is rh/2, it follows from the Theorem of Pappus that

V =
2πr
3
· rh

2
=
πr2h

3


