Worksheet 6

Claudiu Raicu

March 8, 2010

Determine whether the series converges or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^7+n^2}}$$
. 2. $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$. 3. $\sum_{n=1}^{\infty} \tan\left(\frac{1}{n^2+3n+4}\right)$

- 4. Show that if $a_n > 0$ and $\lim_{n \to \infty} na_n \neq 0$, then $\sum a_n$ is divergent.
- 5. Show that if $a_n > 0$ and $\sum a_n$ is convergent, then $\sum \ln(1 + a_n)$ is convergent.
- 6. Show that if $a_n > 0$ and $\sum a_n$ is convergent, then $\sum \sin(a_n)$ is convergent.
- 7. If $\sum a_n$ and $\sum b_n$ are both convergent series with positive terms, is it true that $\sum a_n b_n$ is also convergent?
- 8. (Cauchy condensation test) If $\{a_n\}$ is a monotone decreasing sequence, then $\sum a_n$ converges if and only if $\sum 2^n a_{2^n}$ converges.
- 9. Use the Cauchy condensation test to determine the values of p for which

$$\sum_{n=3}^{\infty} \frac{1}{n \ln(n) (\ln(\ln(n)))^p}$$

is convergent.

10. How many terms of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ would you need to add to find its sum to within 0.01?

Determine whether the series converges or diverges.

11.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$
. 12. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^2 + 4}}$. 13. $\sum_{n=1}^{\infty} (-1)^n \cos\left(\frac{\pi}{n}\right)$.

14. For which values of p is the series

$$\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$$

convergent?

15. How many terms of the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{2^n n}$ would you need to add to find its sum to within 0.001?

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

16.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.
18. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}}$.
20. $\sum_{j=1}^{\infty} (-1)^j \frac{\sqrt{j}}{j+5}$.
17. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$.
19. $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n^n}$.

Test the series for convergence or divergence

21.
$$\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdots (3n+2)}.$$
 23.
$$\sum_{n=1}^{\infty} \tan(1/n).$$
 25.
$$\sum_{n=1}^{\infty} (\sqrt[n]{3}-1).$$

22.
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}.$$
 24.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^n}{n^{4n}}.$$

- 26. Show that the series $\sum (-1)^{n-1}b_n$, where $b_n = 1/n$ if n is odd and $b_n = 1/n^2$ if n even, is divergent. Why does the Alternating Series Test not apply?
- 27. Is the series

$$\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$$

convergent or divergent?

28. For which positive integers k is the following series convergent?

$$\sum_{n=1}^{\infty} \frac{(n!)^k}{(kn)!}.$$