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1. We use the Root Test (the Ratio Test also works - try it!):

n
√
|an| = n

√∣∣∣∣(−1)nxn

n + 1

∣∣∣∣ =
|x|

n
√

n + 1

Since limn→∞
n
√

n + 1 = 1, we get

lim
n→∞

n
√
|an| = |x|.

The Radius of Convergence is then given by

|x| < 1, so R = 1.

To get the interval of convergence, we have to test x = 1 and x = −1. When x = 1, we
get the series

∞∑
n=0

(−1)n

n + 1

which is convergent by the Alternating Series Test (you’ll need to fill in the details here).
When x = −1, we get the series

∞∑
n=0

1
n + 1

which is divergent being the Harmonic Series. Summing up, the Interval of Convergence
is I = (−1, 1] and the Radius of Convergence is R = 1.

2. We use the Ratio Test (the Root Test also works - try it!):

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(10x)n+1

(n+1)3

(10x)n

n3

∣∣∣∣∣∣ = |10x| n3

(n + 1)3

Since limn→∞ n3/(n + 1)3 = 1, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10|x|.

The Radius of Convergence is then given by

10|x| < 1, so R =
1
10

= 0.1

1



To get the interval of convergence, we have to test x = 1/10 and x = −1/10. When
x = 1/10, we get the series

∞∑
n=0

1
n3

which is convergent by the p-series test. When x = −1/10, we get the series

∞∑
n=0

(−1)n

n3

which is convergent by the Alternating Series Test. In conclusion, the Interval of Conver-
gence is I = [−1/10, 1/10] and the Radius of Convergence is R = 1/10.

3. We use the Root Test:

n
√
|an| = n

√∣∣∣∣(x− 2)n

nn

∣∣∣∣ =
|x− 2|

n

We then have
lim

n→∞
n
√
|an| = lim

n→∞

|x− 2|
n

= 0,

so the Radius of Convergence is ∞ and the Interval of Convergence is (−∞,∞).

4. We use the Root Test (the Ratio Test also works - try it!):

n
√
|an| = n

√∣∣∣∣(−1)nxn

4n ln n

∣∣∣∣ =
|x|

4 n
√

ln n

Since 1 ≤ ln n ≤ n, taking n-th roots we obtain 1 ≤ n
√

ln n ≤ n
√

n. We know that
limn→∞ n

√
n = 1, so that 1 ≤ limn→∞

n
√

ln n ≤ 1. This implies

lim
n→∞

n
√

ln n = 1

and therefore
lim

n→∞
n
√
|an| =

|x|
4

.

The Radius of Convergence is then given by

|x|
4

< 1⇔ |x| < 4, so R = 4.

To get the interval of convergence, we have to test x = 4 and x = −4. When x = 4, we
get the series

∞∑
n=2

(−1)n

ln n

which is convergent by the Alternating Series Test (you’ll need to fill in the details here).
When x = −4, we get the series

∞∑
n=2

1
ln n

which is divergent by the Comparison Test (you’ll need to fill in the details here - use the
fact that 1/(ln n) > 1/n, and that the Harmonic Series is convergent). Summing up, the
Interval of Convergence is I = (−4, 4] and the Radius of Convergence is R = 4.



5. We use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(n + 1)2(2x− 3)n+1

2 · 4 · · · (2n + 2)
n2(2x− 3)n

2 · 4 · · · (2n)

∣∣∣∣∣∣∣∣ =
|2x− 3|
2n + 2

· (n + 1)2

n2

Since limn→∞(n + 1)2/n2 = 1 and limn→∞ |2x− 3|/(2n + 2) = 0, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

The Radius of Convergence is therefore ∞ and the Interval of Convergence is (−∞,∞).

6. We use the Root Test (the Ratio Test also works - try it!):

n
√
|an| = n

√∣∣∣∣(4x + 1)n

n2

∣∣∣∣ =
|4x + 1|

n
√

n2

Since limn→∞ n
√

n = 1, we get limn→∞
n
√

n2 = 12 = 1, hence

lim
n→∞

n
√
|an| = |4x + 1|.

The Radius of Convergence is then given by

|4x + 1| < 1⇔ |x− (−1/4)| < 1/4, so R = 1/4.

Note that we have a = −1/4. To get the interval of convergence, we have to test x =
a + R = 0 and x = a−R = −1/2. When x = 0, we get the series

∞∑
n=0

1
n2

which is convergent by the p-series test. When x = −1/2, we get the series

∞∑
n=0

(−1)n

n2

which is convergent by the Alternating Series Test. In conclusion, the Interval of Conver-
gence is I = [−1/2, 0] and the Radius of Convergence is R = 1/4.

7. We use the Ratio Test:∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(n + 1)!(2x− 1)n+1

n!(2x− 1)n

∣∣∣∣ = (n + 1)|2x− 1|.

We get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞ for x 6= 1/2.

The Radius of Convergence is therefore 0 and the Interval of Convergence reduces to the
single point 1/2: I = [1/2, 1/2].



8. We apply the Root Test (the Ratio Test also works - try it!), using the fact that

lim
n→∞

n
√

ln n = 1 and lim
n→∞

n
√

n = 1

(see Exercise 4). We have

lim
n→∞

n
√
|an| = lim

n→∞
n

√∣∣∣∣ x2n

n(ln n)2

∣∣∣∣ =
|x|2

1 · 12
= |x|2.

The Radius of Convergence is then given by

|x|2 < 1⇔ |x| < 1, so R = 1.

To get the interval of convergence, we have to test x = 1 and x = −1. When x = 1, we
get the series

∞∑
n=2

1
n(ln n)2

which is convergent by the Integral Test. More explicitly, the sequence 1/(n(ln n)2) is
decreasing and positive, so we can apply the Integral Test to conclude that the convergence
of the series is equivalent to the convergence of the improper integral∫ ∞

2

dx

x(ln x)2

The substitution u = ln x, du = dx/x yields∫
dx

x(ln x)2
=
∫

du

u2
=
−1
u

+ C =
−1

ln(x)
+ C

so ∫ ∞
2

dx

x(ln x)2
= lim

t→∞

[
−1

ln(x)

]t

2

=
1

ln(2)

and we see that the integral is convergent, hence so is our original series.

When x = −1, we get the same series as for x = 1, because (−1)2n = 12n, so we also have
convergence in this case. In conclusion, the Interval of Convergence is I = [−1, 1] and the
Radius of Convergence is R = 1.

9. We have
3

1− x4
= 3

∞∑
n=0

(x4)n =
∞∑

n=0

3x4n.

Since the interval of convergence for the geometric series is determined by the inequality
|x| < 1, our series converges if and only if |x|4 < 1, or equivalently |x| < 1. Therefore
ROC = 1 and IOC = (−1, 1). (Use the standard method to verify these assertions)

10. We have
1 + x

1− x
=
−(1− x) + 2

1− x
= −1 +

2
1− x

= −1 +
∞∑

n=0

2xn.

Since the geometric series has ROC = 1 and IOC = (−1, 1), the same is true about our
series. (Use the standard method to verify these assertions)



11. Using partial fractions we get

x + 2
2x2 − x− 1

=
−1

1− x
− 1

1 + 2x
= −

∞∑
n=0

xn −
∞∑

n=0

(−2x)n =
∞∑

n=0

((−1)n+12n − 1)xn

Our series is therefore the sum between a series with IOC = (−1, 1) and one with IOC =
(−1/2, 1/2). It follows that it has IOC = (−1/2, 1/2). (Use the standard method to verify
these assertions)

12. We have

f(x) =
x2

2
·
(

1
1− 2x

)′
=

x2

2
·

( ∞∑
n=0

(2x)n

)′

=
x2

2
·

( ∞∑
n=0

2nnxn−1

)
+ C =

∞∑
n=0

2n−1nxn+1 + C

To determine C, we plug in x = 0 and get f(0) = 0 + C, i.e. C = 0, so

f(x) =
∞∑

n=0

2n−1nxn+1.

The series expansion for 1/(1 − 2x) has ROC = 1/2, and we know that the radius of
convergence doesn’t change when we take derivatives or integrate. Therefore our series
also has ROC = 1/2. However, the interval of convergence is not preserved, so we need to
test for the end points. When x = 1/2 we get

∞∑
n=0

2n−1n
1

2n+1
=
∞∑

n=0

n

4

which is clearly divergent (use the Test for Divergence, n/4 does not go to 0 as n goes to
infinity). Similarly, when x = −1/2 we get

∞∑
n=0

2n−1n
1

(−2)n+1
=
∞∑

n=0

(−1)n+1n

4

and by the same reasoning as before we obtain the divergence of the series. It follows that
IOC = (−1/2, 1/2). (Use the standard method to verify these assertions)

13. We have

f ′(x) =
1

1 + (x/3)2
· 1

3
=

1
3
· 1

1− (−x2/9)
=

1
3

∞∑
n=0

(
−x2

9

)n

=
∞∑

n=0

(−1)n

32n+1
x2n

It follows that

f(x) =
∫

f ′(x)dx =
∞∑

n=0

(−1)n

32n+1
· x2n+1

2n + 1
+ C.

To determine C, we plug in x = 0 and get f(0) = 0 + C, i.e. C = 0. It follows that

f(x) =
∞∑

n=0

(
(−1)n

32n+1(2n + 1)

)
x2n+1



The radius of convergence for f ′(x) is given by (x/3)2 < 1, or equivalently |x| < 3, so
ROC = 3. Therefore the one for f(x) has to be the same, and to determine IOC we need
to test the endpoints x = ±3. For x = 3 we get

∞∑
n=0

(
(−1)n

32n+1(2n + 1)

)
· 32n+1 =

∞∑
n=0

(−1)n

2n + 1

which is convergent by the Alternating Series Test. When x = −3 we get

∞∑
n=0

(
(−1)n

32n+1(2n + 1)

)
· (−3)2n+1 =

∞∑
n=0

(−1)n+1

2n + 1

which is again convergent by the Alternating Series Test. It follows that IOC = [−3, 3].
(Use the standard method to verify these assertions)

14. We have

x

x2 + 16
=

x

16
· 1

1− (−x2/16)
=

x

16

∞∑
n=0

(
−x2

16

)n

=
∞∑

n=0

(−1)n

16n+1
x2n+1

The IOC for this series is given by the inequality | − x2/16| < 1, or equivalently |x| < 4,
so IOC = (−4, 4) and ROC = 4. (Use the standard method to verify these assertions)

15. We have

f ′(x) =
2x

x2 + 4
=

2x

4
· 1

1− −x2

4

=
x

2

∞∑
n=0

(
−x2

4

)n

=
x

2

∞∑
n=0

(−1)n

4n
x2n =

∞∑
n=0

(−1)n

22n+1
x2n+1

It follows that

f(x) =
∫

f ′(x)dx =
∞∑

n=0

(−1)n

22n+1
· x2n+2

2n + 2
+ C =

∞∑
n=0

(−1)n

22n+2(n + 1)
x2n+2 + C.

To determine C, we plug in x = 0 and get f(0) = 0 + C, i.e. C = ln(4). It follows that

f(x) = ln(4) +
∞∑

n=1

(−1)n−1

22n · n
x2n

The radius of convergence for f ′(x) is given by | − x2/4| < 1, or equivalently |x| < 2, so
ROC = 2. Therefore the one for f(x) has to be the same, and to determine IOC we need
to test the endpoints x = ±2. At both x = 2 and x = −2 we get the series

ln(4) +
∞∑

n=1

(−1)n−1

22n · n
22n =

∞∑
n=1

(−1)n−1

n

which is convergent by the Alternating Series Test. It follows that IOC = [−2, 2]. (Use
the standard method to verify these assertions)



16. (a) Taking the derivative in the equality

1
1− x

=
∞∑

n=0

xn

we get
1

(1− x)2
=
∞∑

n=0

nxn−1 =
∞∑

n=1

nxn−1.

(b) Multiplying by x both sides of the previous equality, we get

x

(1− x)2
=
∞∑

n=1

nxn.

(c) Plugging in x = 1/2 in part (b), we obtain

∞∑
n=1

n

2n
=

1/2
(1− 1/2)2

= 2.

(d) Taking the derivative of the equality in part (a), we get

2
(1− x)3

=
∞∑

n=1

n(n− 1)xn−2 =
∞∑

n=2

n(n− 1)xn−2.

Multiplying both sides by x2, we obtain

2x2

(1− x)3
=
∞∑

n=2

n(n− 1)xn.

(e) Plugging in x = 1/2 in part (d) yields

∞∑
n=1

n2 − n

2n
=
∞∑

n=2

n2 − n

2n
=

2(1/2)2

(1− 1/2)3
= 4

(f) Adding (c) and (e) we obtain

∞∑
n=1

n2

2n
=
∞∑

n=1

n

2n
+
∞∑

n=1

n2 − n

2n
= 2 + 4 = 6.


